scholarly journals Finite Element Tearing and Interconnecting Method and its Algorithms for Parallel Solution of Magnetic Field Problems

2013 ◽  
Vol 3 (1) ◽  
pp. 25-30
Author(s):  
Dániel Marcsa ◽  
Miklós Kuczmann

Abstract Because of the exponential increase of computational resource requirement for numerical field simulations of more and more complex physical phenomena and more and more complex large problems in science and engineering practice, parallel processing appears to be an essential tool to handle the resulting large-scale numerical problems. One way of parallelization of sequential (singleprocessor) finite element simulations is the use of domain decomposition methods. Domain decomposition methods (DDMs) for parallel solution of linear systems of equations are based on the partitioning of the analyzed domain into sub-domains which are calculated in parallel while doing appropriate data exchange between those sub-domains. In this case, the non-overlapping domain decomposition method is the Lagrange multiplier based Finite Element Tearing and Interconnecting (FETI) method. This paper describes one direct solver and two parallel solution algorithms of FETI method. Finally, comparative numerical tests demonstrate the differences in the parallel running performance of the solvers of FETI method. We use a single-phase transformer and a three-phase induction motor as twodimensional static magnetic field test problems to compare the solvers

Author(s):  
Yang Shao ◽  
Zhen Peng ◽  
Kheng Hwee Lim ◽  
Jin-Fa Lee

We review non-conformal domain decomposition methods (DDMs) and their applications in solving electrically large and multi-scale electromagnetic (EM) radiation and scattering problems. In particular, a finite-element DDM, together with a finite-element tearing and interconnecting (FETI)-like algorithm, incorporating Robin transmission conditions and an edge corner penalty term , are discussed in detail. We address in full the formulations, and subsequently, their applications to problems with significant amounts of repetitions. The non-conformal DDM approach has also been extended into surface integral equation methods. We elucidate a non-conformal integral equation domain decomposition method and a generalized combined field integral equation method for modelling EM wave scattering from non-penetrable and penetrable targets, respectively. Moreover, a plane wave scattering from a composite mockup fighter jet has been simulated using the newly developed multi-solver domain decomposition method.


2008 ◽  
Vol 8 (4) ◽  
pp. 393-405 ◽  
Author(s):  
P.N. VABISHCHEVICH

AbstractAt the present time, the domain decomposition methods are considered as the most promising ones for parallel computer systems. Nowadays success is attained mainly in solving approximately the classical boundary value problems for second-order elliptic equations. As for the time-dependent problems of mathematical physics, there are, in common use, approaches based on ordinary implicit schemes and implemented via iterative methods of the domain decomposition. An alternative technique is based on the non-iterative schemes (region-additive schemes). On the basis of the general theory of additive schemes a wide class of difference schemes (alternative directions, locally one-dimensional, factorized schemes, summarized approximation schemes, vec-tor additive schemes, etc.) as applied to the domain decomposition technique for time-dependent problems with synchronous and asynchronous implementations has been investigated. For nonstationary problems with self-adjoint operators, we have considered three dif-ferent types of decomposition operators corresponding to the Dirichlet and Neumann conditions on the subdomain boundaries. General stability conditions have been obtained for the region-additive schemes. We focused on the accuracy of domain decom-position schemes. In particular, the dependence of the convergence rate on the width of subdomain overlapping has been investigated as the primary property. In the present paper, new classes of domain decomposition schemes for nonstationary problems, based on the subdomain overlaping and minimal data exchange in solving problems in subdomains, have been constructed.


Author(s):  
Salem Ahmedou Bamba ◽  
Abdellatif Ellabib

In this paper, a bioheat model of temperature distribution in the human eye is studied, the mathematical formulation of this model is described using adequate mathematical tools. The existence and the uniqueness of the solution of this problem is proven and four algorithms based on finite element method approximation and domain decomposition methods are presented in details. The validation of all algorithm is done using a numerical application for an example where the analytical solution is known. The properties and parameters reported in the open literature for the human eye are used to approximate numerically the temperature for bioheat model by finite element approximation and nonoverlapping domain decomposition method. The obtained results that are verified using the experimental results recorded in the literature revealed a better accuracy by the use of algorithm proposed.


Sign in / Sign up

Export Citation Format

Share Document