scholarly journals Derivation of Commutative Rings and the Leibniz Formula for Power of Derivation

2021 ◽  
Vol 29 (1) ◽  
pp. 1-8
Author(s):  
Yasushige Watase

Summary In this article we formalize in Mizar [1], [2] a derivation of commutative rings, its definition and some properties. The details are to be referred to [5], [7]. A derivation of a ring, say D, is defined generally as a map from a commutative ring A to A-Module M with specific conditions. However we start with simpler case, namely dom D = rng D. This allows to define a derivation in other rings such as a polynomial ring. A derivation is a map D : A → A satisfying the following conditions: (i) D(x + y) = Dx + Dy, (ii) D(xy) = xDy + yDx, ∀x, y ∈ A. Typical properties are formalized such as: D ( ∑ i = 1 n x i ) = ∑ i = 1 n D x i D\left( {\sum\limits_{i = 1}^n {{x_i}} } \right) = \sum\limits_{i = 1}^n {D{x_i}} and D ( ∏ i = 1 n x i ) = ∑ i = 1 n x 1 x 2 ⋯ D x i ⋯ x n ( ∀ x i ∈ A ) . D\left( {\prod\limits_{i = 1}^n {{x_i}} } \right) = \sum\limits_{i = 1}^n {{x_1}{x_2} \cdots D{x_i} \cdots {x_n}} \left( {\forall {x_i} \in A} \right). We also formalized the Leibniz Formula for power of derivation D : D n ( x y ) = ∑ i = 0 n ( i n ) D i x D n - i y . {D^n}\left( {xy} \right) = \sum\limits_{i = 0}^n {\left( {_i^n} \right){D^i}x{D^{n - i}}y.} Lastly applying the definition to the polynomial ring of A and a derivation of polynomial ring was formalized. We mentioned a justification about compatibility of the derivation in this article to the same object that has treated as differentiations of polynomial functions [3].

Author(s):  
D. D. Anderson ◽  
Ranthony A. C. Edmonds

Given a certain factorization property of a ring [Formula: see text], we can ask if this property extends to the polynomial ring over [Formula: see text] or vice versa. For example, it is well known that [Formula: see text] is a unique factorization domain if and only if [Formula: see text] is a unique factorization domain. If [Formula: see text] is not a domain, this is no longer true. In this paper, we survey unique factorization in commutative rings with zero divisors, and characterize when a polynomial ring over an arbitrary commutative ring has unique factorization.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050039
Author(s):  
Sagnik Chakraborty

If [Formula: see text] is a finite commutative ring, it is well known that there exists a nonzero polynomial in [Formula: see text] which is satisfied by every element of [Formula: see text]. In this paper, we classify all commutative rings [Formula: see text] such that every element of [Formula: see text] satisfies a particular monic polynomial. If the polynomial, satisfied by the elements of [Formula: see text], is not required to be monic, then we can give a classification only for Noetherian rings, giving examples to show that the characterization does not extend to arbitrary commutative rings.


1979 ◽  
Vol 28 (4) ◽  
pp. 423-426 ◽  
Author(s):  
M. Rimmer ◽  
K. R. Pearson

AbstractLet R be a commutative ring with an automorphism ∞ of finite order n. An element f of the skew polynomial ring R[x, α] is nilpotent if and only if all coefficients of fn are nilpotent. (The case n = 1 is the well-known description of the nilpotent elements of the ordinary polynomial ring R[x].) A characterization of the units in R[x, α] is also given.


2018 ◽  
Vol 20 ◽  
pp. 01003
Author(s):  
Sophie Frisch

Regarding polynomial functions on a subset S of a non-commutative ring R, that is, functions induced by polynomials in R[x] (whose variable commutes with the coeffcients), we show connections between, on one hand, sets S such that the integer-valued polynomials on S form a ring, and, on the other hand, sets S such that the set of polynomials in R[x] that are zero on S is an ideal of R[x].


Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.


Author(s):  
Amr Ali Al-Maktry

AbstractLet R be a finite commutative ring. The set $${{\mathcal{F}}}(R)$$ F ( R ) of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units $${{\mathcal{F}}}(R)^\times $$ F ( R ) × is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on $$R[x]/(x^2)=R[\alpha ]$$ R [ x ] / ( x 2 ) = R [ α ] , the ring of dual numbers over R, and show that the group $${\mathcal{P}}_{R}(R[\alpha ])$$ P R ( R [ α ] ) , consisting of those polynomial permutations of $$R[\alpha ]$$ R [ α ] represented by polynomials in R[x], is embedded in a semidirect product of $${{\mathcal{F}}}(R)^\times $$ F ( R ) × by the group $${\mathcal{P}}(R)$$ P ( R ) of polynomial permutations on R. In particular, when $$R={\mathbb{F}}_q$$ R = F q , we prove that $${\mathcal{P}}_{{\mathbb{F}}_q}({\mathbb{F}}_q[\alpha ])\cong {\mathcal{P}}({\mathbb{F}}_q) \ltimes _\theta {{\mathcal{F}}}({\mathbb{F}}_q)^\times $$ P F q ( F q [ α ] ) ≅ P ( F q ) ⋉ θ F ( F q ) × . Furthermore, we count unit-valued polynomial functions on the ring of integers modulo $${p^n}$$ p n and obtain canonical representations for these functions.


2014 ◽  
Vol 14 (01) ◽  
pp. 1550008 ◽  
Author(s):  
A. Ghorbani ◽  
Z. Nazemian

In this paper, we define and study a valuation dimension for commutative rings. The valuation dimension is a measure of how far a commutative ring deviates from being valuation. It is shown that a ring R with valuation dimension has finite uniform dimension. We prove that a ring R is Noetherian (respectively, Artinian) if and only if the ring R × R has (respectively, finite) valuation dimension if and only if R has (respectively, finite) valuation dimension and all cyclic uniserial modules are Noetherian (respectively, Artinian). We show that the class of all rings of finite valuation dimension strictly lies between the class of Artinian rings and the class of semi-perfect rings.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2011 ◽  
Vol 10 (04) ◽  
pp. 665-674
Author(s):  
LI CHEN ◽  
TONGSUO WU

Let p be a prime number. Let G = Γ(R) be a ring graph, i.e. the zero-divisor graph of a commutative ring R. For an induced subgraph H of G, let CG(H) = {z ∈ V(G) ∣N(z) = V(H)}. Assume that in the graph G there exists an induced subgraph H which is isomorphic to the complete graph Kp-1, a vertex c ∈ CG(H), and a vertex z such that d(c, z) = 3. In this paper, we characterize the finite commutative rings R whose graphs G = Γ(R) have this property (called condition (Kp)).


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


Sign in / Sign up

Export Citation Format

Share Document