scholarly journals Start-up of large-power synchronous motor with the 6 kV voltage source inverter and microprocessor-controlled unit for excitation supply

2018 ◽  
Vol 69 (2) ◽  
pp. 156-162
Author(s):  
Marian Hyla

Abstract The paper presents idea and practical implementation of a medium voltage synchronous drive with a voltage source inverter in the stator circuit and a microprocessor controlled unit for excitation supply. Construction of both devices was presented, and methods of their cooperation were described. Selected start-up methods of large power synchronous motors were presented. Exemplary realization was discussed. Measurement results of the direct full-voltage start-up and frequency start-up of a real 1.25 MW 6 kV fan drive system were compared and discussed.

2021 ◽  
Vol 309 ◽  
pp. 01142
Author(s):  
S P Harish ◽  
S Sridhar ◽  
Omsekhar Indela ◽  
Kumaran G Kodeeswara ◽  
P. Parthiban

With the advent of electric vehicle multi-machine drives are attaining overwhelming responses from the researchers and industries in recent years, as compared to their counterpart of single machine drive. In this regard, the industries are looking for multi motor control with single inverter system with precise speed control. The solution of aforesaid problem lies with multi-leg inverter fed dual induction motor drives that are capable for high power ratings and other specific applications. Any faults in the system leads to the failure of the operation of the entire drive system. Hence condition monitoring of the entire drive system becomes of paramount significance. Considering the aforementioned points, this paper focuses on the fault analysis of five leg voltage source inverter feeding dual induction motors. The drive system is simulated using MATLAB/ SIMULINK for different pulse width modulation techniques like SPWM, SVPWM and Two Arm Modulation (TAM) Techniques. The effect on fault in the inverter like opening of the switch and shorting the switch, on the performance of the induction motors are analysed. Total Harmonic Distortion (THD) of the stator current for different modulation techniques are compared for the analysis purpose. From the results it is observed that the THD is less for SVPWM techniques as compared with SPWM and TAM method. But independent control of both the machine cannot be attained by SPWM and SVPWM method. For independent speed control TAM method is used. So a trade-off has to be done considering the requirement and THD. It is finally concluded that independent speed control is achieved at the cost of higher THD.


Author(s):  
Meenu Gupta ◽  
Reena Kamboj ◽  
Rinku Dhiman

Variable speed drives are growing and varying. Drives expanse depend on progress in different part of science like power system, microelectronic, control methods and so on. In this paper, the motor drive system comprises a voltage source inverter-fed induction motor (VSIM): namely a three-phase voltage source inverter and the induction motor. The squirrel-cage induction motor voltage equations are based on an orthogonal d-q reference-rotating frame where the co-ordinates rotate with the controlled source frequency. The paper presents a novel fuzzy logic controller for high performance induction motor drive system. The inputs to the fuzzy logic controller are the linguistic variables of speed error and change of speed error, while the output is change in switching control frequency of the voltage source inverter. In this paper a comparison between fuzzy logic controller and traditional PI controllers are presented. The results validate the robustness and effectiveness of the proposed fuzzy logic controller for high performance of induction motor drive. Simulink software that comes along with MATLAB was used to simulate the proposed model.


2012 ◽  
Vol 45 (21) ◽  
pp. 554-559
Author(s):  
Khoudir MAROUANI ◽  
Lyas BEKRAR ◽  
Bekheira TABBACHE ◽  
Farid KHOUCHA ◽  
Abdelaziz KHELOUI

Sign in / Sign up

Export Citation Format

Share Document