space vector
Recently Published Documents


TOTAL DOCUMENTS

3051
(FIVE YEARS 623)

H-INDEX

81
(FIVE YEARS 8)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Intissar Moussa ◽  
Adel Khedher

An appropriate modulation scheme selection ensures inverter performance. Thus, space vector modulation (SVM) is more efficient and has its own distinct advantages compared to other pulse width modulation (PWM) techniques. This work deals with the development of an advanced space vector pulse width modulation (SVM) technique for two-phase inverter control using an XSG library to ensure rapid prototyping of the controller FPGA implementation. The proposed architecture is applied digitally and in real time to drive a two-phase induction motor (TPIM) for small-scale wind turbine emulation (WTE) profiles in laboratories with minimum current ripple and torque oscillation. Four space voltage vectors generated for the used SVM technique do not contain a zero vector. Hence, for an adequate adjustment of these four vectors, a reference voltage vector located in the square locus is determined. Considering the asymmetry between the main and auxiliary windings, the TPIM behavior, which is fed through the advanced SVM controlled-two-phase inverter (2ϕ-inverter), is studied, allowing us to control the speed and the torque under different conditions for wind turbine emulation. Several quantities, such as electromagnetic torque, rotor fluxes, stator currents and speed, are analyzed. To validate the obtained results using both Simulink and XSG interfaces, the static and dynamic characteristics of the WTE are satisfactorily reproduced. The collected speed and torque errors between the reference and actual waveforms show low rates, proving emulator controller effectiveness.


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Khaliqur Rahman ◽  
Syed Rahman ◽  
Mahajan Sagar Bhaskar ◽  
Atif Iqbal ◽  
Amith Khandakar ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 266
Author(s):  
Won-Sang Jeong ◽  
Yoon-Seong Lee ◽  
Jung-Hyo Lee ◽  
Chang-Hee Lee ◽  
Chung-Yuen Won

This paper proposes a space vector modulation (SVM)-based common-mode (CM) currents reduction method of an H8 inverter for permanent magnet synchronous motor (PMSM) drives. There are power quality issues in the PMSM drive systems, such as current distortions and CM electromagnetic interference (EMI) due to the fast-switching operation of the inverter. These issues are related to CM voltage (CMV) and CM current (CMC). Although several studies have been conducted to reduce the CMV and CMC, some CMV variations and CMCs are still generated in the real implementation. Unlike conventional methods, the proposed method selects the voltage vectors with similar CMV levels and arranges them considering the series-connected switch operation of the H8 inverter in a voltage vector modulation sequence. At a low modulation index (MI), the proposed method completely restricts the CMV variations into six times. At high MI, the proposed method synthesizes the reference voltage vector differently, depending on the position of the reference vector, to reduce both current distortions and CMCs. The validity of the proposed method is verified through simulations and experimental results.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Nam Xuan Doan ◽  
Nho Van Nguyen

This paper proposes a novel 3-phase asymmetric 3-level T-type NPC inverter and studies its PWM performance using a virtual space vector pulse width modulation control strategy. Firstly, the mathematical model and characteristics of this economical topology are described. Then, a virtual space vector approach is proposed to build a space vector diagram for designing SVPWM control. Similar to the conventional 3-level NPC inverter, the asymmetric inverter can also work with the neutral point voltage self-balancing in a fundamental period, which enables employment of this topology in various applications. Finally, simulation and experiment results under different load conditions have shown good output performance of the asymmetric 3-level topology. Similar tests are also performed on both conventional 2-level and 3-level inverters for comparison. For an almost similar number of different voltage vectors in the space vector diagram, the asymmetric 3-level topology can compete with conventional 3-level inverters for low-cost applications. The obvious benefit of the asymmetric 3-level inverter is a smaller number of switches devices while it can achieve output performance similar to that of the conventional 3-level. The comparative investigation also shows that the total loss given by SVPWM for the asymmetric 3-level configuration is lower than that of the traditional 3-level inverter.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2968
Author(s):  
Minh-Khai Nguyen ◽  
Youn-Ok Choi

In Z-source topologies, a high-amplitude common-mode voltage can occur when shoot-through states are inserted. In this study, a new space vector pulse-width modulation for an active quasi-Z-source topology is proposed to operate at a high modulation index and reduce the common-mode voltage to one-third of the DC-link voltage. Moreover, the quality of the output voltage is improved by operation with a high modulation index and decreasing the switching loss of the H-bridge switches. The detailed operating principles of the active quasi-Z-source topology using the proposed space vector modulation (SVM) method are presented. A simulation model was built, and an experimental prototype was verified to correct the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document