scholarly journals Leray-Schauder’s solution for a nonlocal problem in a fractional Orlicz-Sobolev space

2020 ◽  
Vol 6 (1) ◽  
pp. 42-52 ◽  
Author(s):  
Athmane Boumazourh ◽  
Mohammed Srati

AbstractVia Leray-Schauder’s nonlinear alternative, we obtain the existence of a weak solution for a nonlocal problem driven by an operator of elliptic type in a fractional Orlicz-Sobolev space, with homogeneous Dirichlet boundary conditions.

2003 ◽  
Vol 2003 (43) ◽  
pp. 2735-2746 ◽  
Author(s):  
Ekaterina T. Kolkovska

We consider the one-dimensional Burgers equation perturbed by a white noise term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence of a weak solution proving tightness for a sequence of polygonal approximations for the equation and solving a martingale problem for the weak limit.


Author(s):  
Louanas Bouzidi ◽  
Arezki Kheloufi

This article deals with the parabolic equation ∂tw − c(t)∂2x w = f in D, D = { (t, x) ∈ R2 : t > 0, φ1 (t) < x < φ2(t) } with φi : [0,+∞[→ R, i = 1, 2 and c : [0,+∞[→ R satisfying some conditions and the problem is supplemented with boundary conditions of Dirichlet-Robin type. We study the global regularity problem in a suitable parabolic Sobolev space. We prove in particular that for f ∈ L2(D) there exists a unique solution w such that w, ∂tw, ∂jw ∈ L2(D), j = 1, 2. Notice that the case of bounded non-rectangular domains is studied in [9]. The proof is based on energy estimates after transforming the problem in a strip region combined with some interpolation inequality. This work complements the results obtained in [19] in the case of Cauchy-Dirichlet boundary conditions


2011 ◽  
Vol 141 (6) ◽  
pp. 1279-1294 ◽  
Author(s):  
Marius Ghergu

We study the elliptic system −Δu = δ(x)−avp in Ω, −Δv = δ(x)−buq in Ω, subject to homogeneous Dirichlet boundary conditions. Here, Ω ⊂ ℝN, N ≥ 1, is a smooth and bounded domain, δ(x) = dist(x, ∂Ω), a, b ≥ 0 and p, q ∈ ℝ satisfy pq > −1. The existence, non-existence and uniqueness of solutions are investigated in terms of a, b, p and q.


Author(s):  
César E. Torres Ledesma

AbstractThe purpose of this paper is to study the existence of solutions for equations driven by a non-local regional operator with homogeneous Dirichlet boundary conditions. More precisely, we consider the problemwhere the nonlinear term


2009 ◽  
Vol 11 (01) ◽  
pp. 59-69 ◽  
Author(s):  
PAOLO ROSELLI ◽  
MICHEL WILLEM

We prove the existence of (a pair of) least energy sign changing solutions of [Formula: see text] when Ω is a bounded domain in ℝN, N = 5 and λ is slightly smaller than λ1, the first eigenvalue of -Δ with homogeneous Dirichlet boundary conditions on Ω.


2018 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
A. J. Bissouesse ◽  
Daniel Moukoko ◽  
Franck Langa ◽  
Macaire Batchi

Our aim in this article is to study the existence and the uniqueness of solution for Cahn-Hilliard hyperbolic phase-field system, with initial conditions, homogeneous Dirichlet boundary conditions, polynomial potential in a bounded and smooth domain.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kwangjoong Kim ◽  
Wonhyung Choi ◽  
Inkyung Ahn

<p style='text-indent:20px;'>In this study, we consider a Lotka–Volterra reaction–diffusion–advection model for two competing species under homogeneous Dirichlet boundary conditions, describing a hostile environment at the boundary. In particular, we deal with the case in which one species diffuses at a constant rate, whereas the other species has a constant rate diffusion rate with a directed movement toward a better habitat in a heterogeneous environment with a lethal boundary. By analyzing linearized eigenvalue problems from the system, we conclude that the species dispersion in the advection direction is not always beneficial, and survival may be determined by the convexity of the environment. Further, we obtain the coexistence of steady-states to the system under the instability conditions of two semi-trivial solutions and the uniqueness of the coexistence steady states, implying the global asymptotic stability of the positive steady-state.</p>


Sign in / Sign up

Export Citation Format

Share Document