scholarly journals Reaction-advection-diffusion competition models under lethal boundary conditions

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kwangjoong Kim ◽  
Wonhyung Choi ◽  
Inkyung Ahn

<p style='text-indent:20px;'>In this study, we consider a Lotka–Volterra reaction–diffusion–advection model for two competing species under homogeneous Dirichlet boundary conditions, describing a hostile environment at the boundary. In particular, we deal with the case in which one species diffuses at a constant rate, whereas the other species has a constant rate diffusion rate with a directed movement toward a better habitat in a heterogeneous environment with a lethal boundary. By analyzing linearized eigenvalue problems from the system, we conclude that the species dispersion in the advection direction is not always beneficial, and survival may be determined by the convexity of the environment. Further, we obtain the coexistence of steady-states to the system under the instability conditions of two semi-trivial solutions and the uniqueness of the coexistence steady states, implying the global asymptotic stability of the positive steady-state.</p>

2019 ◽  
Vol 29 (09) ◽  
pp. 1950113
Author(s):  
Jun Jiang ◽  
Jinfeng Wang ◽  
Yingwei Song

A reaction–diffusion predator–prey system with homogeneous Dirichlet boundary conditions describes the lethal risk of predator and prey species on the boundary. The spatial pattern formations with the homogeneous Dirichlet boundary conditions are characterized by the Turing type linear instability of homogeneous state and bifurcation theory. Compared with homogeneous Neumann boundary conditions, we see that the homogeneous Dirichlet boundary conditions may depress the spatial patterns produced through the diffusion-induced instability. In addition, the existence of semi-trivial steady states and the global stability of the trivial steady state are characterized by the comparison technique.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2265
Author(s):  
Malgorzata Klimek

In this study, we consider regular eigenvalue problems formulated by using the left and right standard fractional derivatives and extend the notion of a fractional Sturm–Liouville problem to the regular Prabhakar eigenvalue problem, which includes the left and right Prabhakar derivatives. In both cases, we study the spectral properties of Sturm–Liouville operators on function space restricted by homogeneous Dirichlet boundary conditions. Fractional and fractional Prabhakar Sturm–Liouville problems are converted into the equivalent integral ones. Afterwards, the integral Sturm–Liouville operators are rewritten as Hilbert–Schmidt operators determined by kernels, which are continuous under the corresponding assumptions. In particular, the range of fractional order is here restricted to interval (1/2,1]. Applying the spectral Hilbert–Schmidt theorem, we prove that the spectrum of integral Sturm–Liouville operators is discrete and the system of eigenfunctions forms a basis in the corresponding Hilbert space. Then, equivalence results for integral and differential versions of respective eigenvalue problems lead to the main theorems on the discrete spectrum of differential fractional and fractional Prabhakar Sturm–Liouville operators.


2011 ◽  
Vol 141 (6) ◽  
pp. 1279-1294 ◽  
Author(s):  
Marius Ghergu

We study the elliptic system −Δu = δ(x)−avp in Ω, −Δv = δ(x)−buq in Ω, subject to homogeneous Dirichlet boundary conditions. Here, Ω ⊂ ℝN, N ≥ 1, is a smooth and bounded domain, δ(x) = dist(x, ∂Ω), a, b ≥ 0 and p, q ∈ ℝ satisfy pq > −1. The existence, non-existence and uniqueness of solutions are investigated in terms of a, b, p and q.


Author(s):  
César E. Torres Ledesma

AbstractThe purpose of this paper is to study the existence of solutions for equations driven by a non-local regional operator with homogeneous Dirichlet boundary conditions. More precisely, we consider the problemwhere the nonlinear term


Sign in / Sign up

Export Citation Format

Share Document