scholarly journals Study on factors of interface properties of axial braided C/C composite materials

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chunguang Wang ◽  
Weiping Tian ◽  
Kaining Zhang

Abstract In order to study the influencing factors of the tensile properties of axial braided C/C composites, the interfacial shear strength of the fiber rod and matrix was studied and ejecting tests of the fiber rod were carried out. The ejecting test specimens were formed with different thicknesses to obtain the changing rule of the interface shear strength with the thickness of the sample, and the testing method for the interface shear strength of the axial braided C/C composite material. The results show that the recommended thickness of the ejecting test specimens for the interface shear strength of is four times the diameter of the fiber rod. The interface shear strength distribution law of two different batches of materials was obtained through the interface ejecting test. The mesoscopic structure characteristics and pore statistical distribution law of the hole surface after ejecting were analyzed by scanning electron microscopy (SEM), and the mechanism of the difference of the interface shear strength was obtained. The tensile properties of two different batches of materials were obtained by tensile tests. The results show that the tensile properties of the two batches of materials differ greatly. The analysis suggests that the reason for this difference is the differences in interfacial bonding strength between the fiber rod and matrix. The higher the interface shear strength, the better the tensile property of the material will be.

1987 ◽  
Vol 20 (8) ◽  
pp. 824
Author(s):  
J.E. Bechtold ◽  
Y. Dohmae ◽  
R.E. Sherman ◽  
R.B. Gustilo

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Karl Niklas Hansson ◽  
Stig Hansson

The surface roughness affects the bone response to dental implants. A primary aim of the roughness is to increase the bone-implant interface shear strength. Surface roughness is generally characterized by means of surface roughness parameters. It was demonstrated that the normally used parameters cannot discriminate between surfaces expected to give a high interface shear strength from surfaces expected to give a low interface shear strength. It was further demonstrated that the skewness parameter can do this discrimination. A problem with this parameter is that it is sensitive to isolated peaks and valleys. Another roughness parameter which on theoretical grounds can be supposed to give valuable information on the quality of a rough surface is kurtosis. This parameter is also sensitive to isolated peaks and valleys. An implant surface was assumed to have a fairly well-defined and homogenous “semiperiodic” surface roughness upon which isolated peaks were superimposed. In a computerized simulation, it was demonstrated that by using small sampling lengths during measurement, it should be possible to get accurate values of the skewness and kurtosis parameters.


Sign in / Sign up

Export Citation Format

Share Document