Concrete-to-concrete interface shear strength prediction based on explainable extreme gradient boosting approach

2021 ◽  
Vol 308 ◽  
pp. 125088
Author(s):  
Ji-Gang Xu ◽  
Shi-Zhi Chen ◽  
Wei-Jie Xu ◽  
Zi-Sen Shen
2016 ◽  
Vol 11 (3) ◽  
pp. 361-372 ◽  
Author(s):  
Chunshun Zhang ◽  
Jian Ji ◽  
Yilin Gui ◽  
Jayantha Kodikara ◽  
Sheng-Qi Yang ◽  
...  

2016 ◽  
Vol 2 (8) ◽  
pp. 365-374
Author(s):  
Amir Hossein Mohammadi ◽  
Taghi Ebadi ◽  
Mehrdad Ahmadi ◽  
Arash Aliasghar

A laboratory investigation into crude oil contaminated sand-concrete interface behavior is performed. The interface tests were carried out through a direct shear apparatus. Pure sand and sand-bentonite mixture with different crude oil contents and three concrete surfaces of different textures (smooth, semi-rough, and rough) were examined. The experimental results showed that the concrete surface texture is an effective factor in soil-concrete interface shear strength. The interface shear strength of the rough concrete surface was found higher than smooth and semi-rough concrete surfaces. In addition to the texture, the normal stress and the crude oil content also play important roles in interface shear strength. Moreover, the friction angle decreases with increasing crude oil content due to increase of oil concentration in soil and it increases with increasing interface roughness.


1987 ◽  
Vol 20 (8) ◽  
pp. 824
Author(s):  
J.E. Bechtold ◽  
Y. Dohmae ◽  
R.E. Sherman ◽  
R.B. Gustilo

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Karl Niklas Hansson ◽  
Stig Hansson

The surface roughness affects the bone response to dental implants. A primary aim of the roughness is to increase the bone-implant interface shear strength. Surface roughness is generally characterized by means of surface roughness parameters. It was demonstrated that the normally used parameters cannot discriminate between surfaces expected to give a high interface shear strength from surfaces expected to give a low interface shear strength. It was further demonstrated that the skewness parameter can do this discrimination. A problem with this parameter is that it is sensitive to isolated peaks and valleys. Another roughness parameter which on theoretical grounds can be supposed to give valuable information on the quality of a rough surface is kurtosis. This parameter is also sensitive to isolated peaks and valleys. An implant surface was assumed to have a fairly well-defined and homogenous “semiperiodic” surface roughness upon which isolated peaks were superimposed. In a computerized simulation, it was demonstrated that by using small sampling lengths during measurement, it should be possible to get accurate values of the skewness and kurtosis parameters.


Sign in / Sign up

Export Citation Format

Share Document