scholarly journals Synthesis and biological activity of novel heavy metal complexes of 5-amino-1, 10-phenanthroline and 1,10-phenanthroline

2012 ◽  
Vol 10 (4) ◽  
pp. 1034-1041
Author(s):  
Nikolay Kaloyanov ◽  
Mihail Neykov ◽  
Diana Wesselinova ◽  
Georgi Dimitrov

AbstractNovel heavy metal complexes: Sr(5-NH2-phen)4(NO3)(OH)(H2O)2 (1) (synthesized via a static self-assembly process) and Sn(phen)(NO3)(OH)(H2O) (2), Sn(5-NH2-phen)(OH)(Cl)(H2O) (3), Pb(5-NH2-phen)(NO3)2(H2O) (4) (obtained via metal competitive reactions under mild conditions) were reported. The coordination compounds were characterized by elemental analysis, FTIR-spectroscopy and FAB-mass spectrometry. Their cytotoxicity was measured by MTS-test towards human tumour (MDA-MB-231, HT-29, HeLa, HepG2) and non-tumour diploid (Lep-3) cell lines. The most pronounced cytotoxic effect on all cancer lines showed 1 and 4 at their high concentrations as well as 1 at its lower ones (≤ 4×10−2 mg). Therefore, strontium complex of 5-amino-o-phenanthroline (1) exhibited the widest antitumour spectrum activity, having no toxicity to non-tumour cells at quantities ≤ 4×10−2 mg. The computed EC50 values of 1–4 against MDA-MB-231, HT-29, HeLa, HepG2 varied from 1.40×10−3 to 6.31×10−6 M. Towards Lep-3 substances 2–4 showed IC50 7.52×10−4 − 0.44 M. Substance 1 possess EC50=1.26×10−7 M to the non-tumour cells.

2021 ◽  
Author(s):  
Elena Bassan ◽  
Andrea Gualandi ◽  
Pier Giorgio Cozzi ◽  
Paola Ceroni

BODIPYs offer a versatile platform to build organic triplet photosensitisers for PDT, TTA upconversion and photocatalysis. Tuning their properties provides the opportunity of replacing heavy-metal complexes and can lead to improved sustainability.


BioMetals ◽  
2014 ◽  
Vol 27 (3) ◽  
pp. 507-525 ◽  
Author(s):  
Susana S. Braga ◽  
Joana Marques ◽  
Elena Heister ◽  
Cátia V. Diogo ◽  
Paulo J. Oliveira ◽  
...  
Keyword(s):  

2005 ◽  
Vol 65 (1) ◽  
pp. 67-76 ◽  
Author(s):  
A. G Ferreira ◽  
A. L. S. Machado ◽  
I. R. Zalmon

Heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) concentrations were determined by ICP-AES in Ostrea equestris from three beaches (Barra do Furado, Buena, and Ponta do Retiro) on the northern coast of Rio de Janeiro State. The average concentration was 0.8 ± 0.18, 0.4 ± 0.21, 58 ± 25.6, 249 ± 52.3, 11 ± 1.31, 0.55 ± 0.16, 0.13 ± 0.11, and 1131 ± 321 µg.g-1 dry weight for Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn respectively. Significant spatial variation (p < 0.05) between the samples areas occurred for Cr, Pb, and Zn with higher values in Barra do Furado; and for Cu in Ponta do Retiro. Significant temporal variations (p < 0.05) were observed for all metals except Cu. Temporal variability may be related to changes in the inputs of metals associated with suspended particles. Concentrations were similar to those found in areas under low pollution impact, except for Zn, the high concentrations of which probably reflect the physiological characteristics of these organisms.


2017 ◽  
Vol 89 (3) ◽  
pp. 379-392 ◽  
Author(s):  
Maxim N. Sokolov ◽  
Alexander V. Anyushin ◽  
Rita Hernandez-Molina ◽  
Rosa Llusar ◽  
Manuel G. Basallote

AbstractThis contribution is a documentation of recent advances in the chemistry of chalcogenide polynuclear transition metal complexes coordinated with mono- and di-phosphines functionalized with hydroxo groups. A survey of complexes containing tris(hydroxymethyl)phosphine (THP) is presented. The influence of the alkyl chain in bidentate phosphines, bearing the P–(CH2)x–OH arms, is also analyzed. Finally, isolation and structure elucidation of the complexes with HP(OH)2, P(OH)3, As(OH)3, PhP(OH)2, stabilized by coordination to Ni(0) and Pd(0) centers embedded into chalcogenide clusters, is discussed.


2011 ◽  
Vol 40 (5) ◽  
pp. 2508 ◽  
Author(s):  
Qiang Zhao ◽  
Chunhui Huang ◽  
Fuyou Li
Keyword(s):  

2018 ◽  
Vol 2 (12) ◽  
pp. 915-929 ◽  
Author(s):  
Ryan A. Carpenter ◽  
Jun-Goo Kwak ◽  
Shelly R. Peyton ◽  
Jungwoo Lee

2019 ◽  
Vol 18 (02) ◽  
pp. 1850019
Author(s):  
Huiyuan Yu ◽  
Jiayi Zhu ◽  
Hongbo Ren ◽  
Shuxin Liu

Graphene-based aerogels with a three-dimensional interconnected network were fabricated via the hydrothermal self-assembly and thermal-annealing process. The aerogels were characterized by means of scanning electron microscopy and atomic absorption spectroscopy. The graphene-based aerogels showed highly porous structure and adsorption capacity for heavy metal ions. Thus, they would be the promising materials for removal of heavy metal ions from water.


Sign in / Sign up

Export Citation Format

Share Document