scholarly journals Ordinary reduction of K3 surfaces

2009 ◽  
Vol 7 (2) ◽  
Author(s):  
Fedor Bogomolov ◽  
Yuri Zarhin

AbstractLet X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.

2021 ◽  
Vol 16 (1) ◽  
pp. 41-52
Author(s):  
Henry H. Kim

Abstract In a family of Sn -fields (n ≤ 5), we show that except for a density zero set, the lower and upper bounds of the Euler-Kronecker constants are −(n − 1) log log dK + O(log log log dK ) and loglog dK + O(log log log dK ), resp., where dK is the absolute value of the discriminant of a number field K.


1985 ◽  
Vol 99 ◽  
pp. 11-30 ◽  
Author(s):  
Shigeyuki Kondo

A degeneration of K3 surfaces (over the complex number field) is a proper holomorphic map π: X→Δ from a three dimensional complex manifold to a disc, such that, for t ≠ 0, the fibres Xt = π-1(t) are smooth K3 surfaces (i.e. surfaces Xt with trivial canonical class KXt = 0 and dim H1(Xt, Oxt) = 0).


2015 ◽  
Vol 11 (04) ◽  
pp. 1233-1257
Author(s):  
Tibor Backhausz ◽  
Gergely Zábrádi

Let E be an elliptic curve — defined over a number field K — without complex multiplication and with good ordinary reduction at all the primes above a rational prime p ≥ 5. We construct a pairing on the dual p∞-Selmer group of E over any strongly admissible p-adic Lie extension K∞/K under the assumption that it is a torsion module over the Iwasawa algebra of the Galois group G = Gal(K∞/K). Under some mild additional hypotheses, this gives an algebraic functional equation of the conjectured p-adic L-function. As an application, we construct completely faithful Selmer groups in case the p-adic Lie extension is obtained by adjoining the p-power division points of another non-CM elliptic curve A.


2011 ◽  
Vol 63 (3) ◽  
pp. 481-499 ◽  
Author(s):  
Arthur Baragar

Abstract In this paper, we give several pictorial fractal representations of the ample or K¨ahler cone for surfaces in a certain class of K3 surfaces. The class includes surfaces described by smooth (2, 2, 2) forms in ℙ1 × ℙ1 × ℙ1 defined over a sufficiently large number field K that have a line parallel to one of the axes and have Picard number four. We relate the Hausdorff dimension of this fractal to the asymptotic growth of orbits of curves under the action of the surface's group of automorphisms. We experimentally estimate the Hausdorff dimension of the fractal to be 1.296 ± .010.


2019 ◽  
Vol 155 (5) ◽  
pp. 912-937 ◽  
Author(s):  
Emanuel Reinecke

Derived equivalences of twisted K3 surfaces induce twisted Hodge isometries between them; that is, isomorphisms of their cohomologies which respect certain natural lattice structures and Hodge structures. We prove a criterion for when a given Hodge isometry arises in this way. In particular, we describe the image of the representation which associates to any autoequivalence of a twisted K3 surface its realization in cohomology: this image is a subgroup of index $1$or $2$in the group of all Hodge isometries of the twisted K3 surface. We show that both indices can occur.


Author(s):  
Ziquan Yang

Abstract We generalize Mukai and Shafarevich’s definitions of isogenies between K3 surfaces over ${\mathbb{C}}$ to an arbitrary perfect field and describe how to construct isogenous K3 surfaces over $\bar{{\mathbb{F}}}_p$ by prescribing linear algebraic data when $p$ is large. The main step is to show that isogenies between Kuga–Satake abelian varieties induce isogenies between K3 surfaces, in the context of integral models of Shimura varieties. As a byproduct, we show that every K3 surface of finite height admits a CM lifting under a mild assumption on $p$.


2018 ◽  
Vol 17 (10) ◽  
pp. 1850195
Author(s):  
Timothy M. McCoy ◽  
Chris Peterson ◽  
Andrew J. Sommese

Let [Formula: see text] be a set of elements in the polynomial ring [Formula: see text], let [Formula: see text] denote the ideal generated by the elements of [Formula: see text], and let [Formula: see text] denote the radical of [Formula: see text]. There is a unique decomposition [Formula: see text] with each [Formula: see text] a prime ideal corresponding to a minimal associated prime of [Formula: see text] over [Formula: see text]. Let [Formula: see text] denote the reduced algebraic set corresponding to the common zeroes of the elements of [Formula: see text]. Techniques from numerical algebraic geometry can be used to determine the numerical irreducible decomposition of [Formula: see text] over [Formula: see text]. This corresponds to producing a witness set for [Formula: see text] for each [Formula: see text] together with the degree and dimension of [Formula: see text] (a point in a witness set for [Formula: see text] can be considered as a numerical approximation for a general point on [Formula: see text]). The purpose of this paper is to show how to extend these results taking into account the field of definition for the polynomial system. In particular, let [Formula: see text] be a number field (i.e. a finite field extension of [Formula: see text]) and let [Formula: see text] be a set of elements in [Formula: see text]. We show how to extend techniques from numerical algebraic geometry to determine the numerical irreducible decomposition of [Formula: see text] over [Formula: see text].


Author(s):  
MEI-CHU CHANG ◽  
HOIL KIM

Recently Calabi–Yau threefolds have been studied intensively by physicists and mathematicians. They are used as physical models of superstring theory [Y] and they are one of the building blocks in the classification of complex threefolds [KMM]. These are three dimensional analogues of K3 surfaces. However, there is a fundamental difference as is to be expected. For K3 surfaces, the moduli space N of K3 surfaces is irreducible of dimension 20, inside which a countable number of families Ng with g [ges ] 2 of algebraic K3 surfaces of dimension 19 lie as a dense subset. More explicitly, an element in Ng is (S, H), where S is a K3 surface and H is a primitive ample divisor on S with H2 = 2g − 2. For a generic (S, H), Pic (S) is generated by H, so that the rank of the Picard group of S is 1. A generic surface S in N is not algebraic and it has Pic (S) = 0, but dim N = h1(S, TS) = 20 [BPV]. It is quite an interesting problem whether or not the moduli space M of all Calabi–Yau threefolds is irreducible in some sense [R]. A Calabi–Yau threefold is algebraic if and only if it is Kaehler, while every non-algebraic K3 surface is still Kaehler. Inspired by the K3 case, we define Mh,d to be {(X, H)[mid ]H3 = h, c2(X) · H = d}, where H is a primitive ample divisor on a smooth Calabi–Yau threefold X. There are two parameters h, d for algebraic Calabi–Yau threefolds, while there is only one parameter g for algebraic K3 surfaces. (Note that c2(S) = 24 for every K3 surface.) We know that Ng is of dimension 19 for every g and is irreducible but we do not know the dimension of Mh,d and whether or not Mh,d is irreducible. In fact, the dimension of Mh,d = h1(X, TX), where (X, H) ∈ Mh,d. Furthermore, it is well known that χ(X) = 2 (rank of Pic (X) − h1(X, TX)), where χ(X) is the topological Euler characteristic of X. Calabi–Yau threefolds with Picard rank one are primitive [G] and play an important role in the moduli spaces of all Calabi–Yau threefolds. In this paper we give a bound on c3 of Calabi–Yau threefolds with Picard rank 1.


Sign in / Sign up

Export Citation Format

Share Document