Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers

2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Grzegorz Graff ◽  
Agnieszka Kaczkowska

AbstractLet f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math. (in press)] the topological invariant J[f] which is equal to the minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of f.In this paper the invariant J[f] is computed for self-maps of 4-manifold M with dimH 2(M; ℚ) ≤ 4 and estimated for other types of manifolds. We also use J[f] to compare minimization of the number of periodic points in smooth and in continuous categories.

2021 ◽  
pp. 1-8
Author(s):  
DANIEL KASPROWSKI ◽  
MARKUS LAND

Abstract Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.


2015 ◽  
Vol 26 (05) ◽  
pp. 1550029
Author(s):  
Yasha Savelyev

We study a smooth analogue of jumping curves of a holomorphic vector bundle, and use Yang–Mills theory over S2 to show that any non-trivial, smooth Hermitian vector bundle E over a smooth simply connected manifold, must have such curves. This is used to give new examples complex manifolds for which a non-trivial holomorphic vector bundle must have jumping curves in the classical sense (when c1(E) is zero). We also use this to give a new proof of a theorem of Gromov on the norm of curvature of unitary connections, and make the theorem slightly sharper. Lastly we define a sequence of new non-trivial integer invariants of smooth manifolds, connected to this theory of smooth jumping curves, and make some computations of these invariants. Our methods include an application of the recently developed Morse–Bott chain complex for the Yang–Mills functional over S2.


Sign in / Sign up

Export Citation Format

Share Document