Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent

2011 ◽  
Vol 65 (3) ◽  
Author(s):  
Selvaraj Roopan ◽  
Fazlur-Rahman Khan ◽  
Jong Jin

AbstractThe Mitsunobu reaction is a well-established fundamental reaction and has been widely applied in organic synthesis. In this paper, under Mitsunobu conditions dehydration proceeds between (2-chloroquinolin-3-yl)methanol and nitrogen heterocyclic compounds such as quinazolinone, pyrimidone, 2-oxoquinoline in dry THF in the presence of triethylamine, triphenylphosphane and diethyl azodicarboxylate to give the corresponding products. As part of our recent research, we attempted to couple two N-heterocyclic compounds under Mitsunobu reaction conditions to provide efficient building blocks for natural product synthesis.

Synthesis ◽  
2021 ◽  
Author(s):  
Dávid Roman ◽  
Maria Sauer ◽  
Christine Beemelmanns

Here, we have summarized more than 30 representative natural product syntheses published in 2015 to 2020 that employ one or more Horner-Wadsworth-Emmons (HWE) reactions. We comprehensively describe the applied phosphonate reagents, HWE reaction conditions and key steps of the total synthetic approaches. Our comprehensive review will support future synthetic approaches and serve as guideline to find the best HWE conditions for the most complicated natural products known


2019 ◽  
Vol 14 (10) ◽  
pp. 1934578X1988440
Author(s):  
Kenichi Kobayashi ◽  
Kosaku Tanaka ◽  
Momoko Suzuki ◽  
Hiroshi Kogen

A catalytic asymmetric intramolecular Darzens reaction of 2-halomalonate derivatives was developed for the enantioselective preparation of chiral building blocks for epoxide-containing natural products. Among the screened catalysts, some phase-transfer catalysts gave the desired epoxide in moderate enantioselectivity, albeit in low yield. The epoxide product would be useful as versatile chiral building blocks for natural product synthesis.


Synlett ◽  
1995 ◽  
Vol 1995 (07) ◽  
pp. 761-762 ◽  
Author(s):  
Masahiro Toyota ◽  
Toshihiro Wada ◽  
Masaki Matsuura ◽  
Keiichiro Fukumoto

Synthesis ◽  
2020 ◽  
Vol 52 (19) ◽  
pp. 2781-2794
Author(s):  
Till Opatz ◽  
Leander Geske ◽  
Eisuke Sato

Electrochemistry provides a valuable toolbox for organic synthesis and offers an appealing, environmentally benign alternative to the use of stoichiometric quantities of chemical oxidants or reductants. Its potential to control current efficiency along with providing alternative reaction conditions in a classical sense makes electrochemistry a suitable method for large-scale industrial transformations as well as for laboratory applications in the synthesis of complex molecular architectures. Even though research in this field has intensified over the recent decades, many synthetic chemists still hesitate to add electroorganic reactions to their standard repertoire, and hence, the full potential of preparative organic electrochemistry has not yet been unleashed. This short review highlights the versatility of anodic transformations by summarizing their application in natural product synthesis.1 Introduction2 Shono-Type Oxidation3 C–N/N–N Bond Formation4 Aryl–Alkene/Aryl–Aryl Coupling5 Cycloadditions Triggered by Oxidation of Electron-Rich Arenes6 Spirocycles7 Miscellaneous Transformations8 Future Prospects


2018 ◽  
Vol 47 (9) ◽  
pp. 1116-1118 ◽  
Author(s):  
Sota Katayama ◽  
Tomoyuki Koge ◽  
Satoko Katsuragi ◽  
Shuji Akai ◽  
Tohru Oishi

Synthesis ◽  
2011 ◽  
Vol 2011 (12) ◽  
pp. 1946-1953 ◽  
Author(s):  
Robert Britton ◽  
Shira Halperin ◽  
Baldip Kang

Synthesis ◽  
2016 ◽  
Vol 49 (01) ◽  
pp. 17-28 ◽  
Author(s):  
Ulrich Koert ◽  
Lars Selter ◽  
Lukas Zygalski ◽  
Eric Kerste

Synthesis ◽  
2018 ◽  
Vol 50 (06) ◽  
pp. 1175-1198 ◽  
Author(s):  
Laurent Commeiras ◽  
Muhammad Idham Darussalam Mardjan ◽  
Jean-Luc Parrain

α,β-Unsaturated γ-hydroxy-γ-butyrolactams are of a great interest due to their presence in designed pharmaceutical molecules and numerous natural products displaying a broad spectrum of biological activities. In addition, these five-membered heterocyclic compounds are also relevant and versatile building blocks in organic synthesis. In this context, strategies for the construction of these scaffolds has triggered considerable attention and this review highlights the progress in the formation of α,β-unsaturated γ-hydroxy-γ-butyrolactams (5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones).1 Introduction2 Intramolecular Routes3 Intermolecular Routes4 Oxidation of Heterocyclic Compounds5 Miscellaneous6 Conclusion


Sign in / Sign up

Export Citation Format

Share Document