scholarly journals Strategies To Access γ-Hydroxy-γ-butyrolactams

Synthesis ◽  
2018 ◽  
Vol 50 (06) ◽  
pp. 1175-1198 ◽  
Author(s):  
Laurent Commeiras ◽  
Muhammad Idham Darussalam Mardjan ◽  
Jean-Luc Parrain

α,β-Unsaturated γ-hydroxy-γ-butyrolactams are of a great interest due to their presence in designed pharmaceutical molecules and numerous natural products displaying a broad spectrum of biological activities. In addition, these five-membered heterocyclic compounds are also relevant and versatile building blocks in organic synthesis. In this context, strategies for the construction of these scaffolds has triggered considerable attention and this review highlights the progress in the formation of α,β-unsaturated γ-hydroxy-γ-butyrolactams (5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones).1 Introduction2 Intramolecular Routes3 Intermolecular Routes4 Oxidation of Heterocyclic Compounds5 Miscellaneous6 Conclusion

Author(s):  
Bhagwati Gauni ◽  
Krunal Mehariya ◽  
Anamik Shah ◽  
Srinivas Murty Duggirala

: Substituted tetralones have played a substantial role in organic synthesis due to their strong reactivity and suitability as a starting material for a range of synthetic heterocyclic compounds, pharmaceuticals along with biological activities as well as precursors of many natural products and their derivatives. Many α-tetralone derivatives are building blocks, that have been used in the synthesis of therapeutically functional compounds like some antibiotics, antidepressants, acetylcholinesterase inhibitors effective for treating Alzheimer’s disease and alkaloids possessing antitumor activity. In this review, there has been an attempt to explore the small molecule library having α-tetralone scaffold along with their diverse biological activities. Structural features of α-tetralone derivatives responsible for potential therapeutic applications are also described.


RSC Advances ◽  
2017 ◽  
Vol 7 (22) ◽  
pp. 13198-13211 ◽  
Author(s):  
Sattar Arshadi ◽  
Esmail Vessally ◽  
Ladan Edjlali ◽  
Ebrahim Ghorbani-Kalhor ◽  
Rahim Hosseinzadeh-Khanmiri

Nitrogen-containing heterocyclic compounds are not only prevalent in an extensive number of natural products and synthetic pharmaceuticals but are also used as building blocks in organic synthesis.


Author(s):  
Nadezhda V. Vchislo ◽  
Ekaterina A. Verochkina

: α-Functionally substituted α,β-unsaturated aldehydes belong to the highly reactive class of compounds. They are used as versatile building blocks in organic synthesis. Due to the presence of several reactive sites in their structure, α,β-unsaturated aldehydes are widely employed as precursors of various acyclic and heterocyclic compounds, as well as complex natural products. At the same time, the acrylic systems with heteroatomic substituents (OAlk, SAlk) in the α-position are poorly studied. Therefore, it is impossible to reliably establish the distribution of electron density and to evaluate the real reactivity of each new representative of this class of compounds. This minireview summarizes the works demonstrating the broad applicability of 3-substituted 2-alkoxy and 2-alkylthiopropenals in organic synthesis.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Vishal Banewar

Pyrazolines are well known and important nitrogen containing 5-membered heterocyclic compounds. In the present investigation, a series of various heteroaryl chalcones and pyrazolines were synthesized by condensing formylquinolines with diverse ketones. The newly synthesized 2-pyrazolines were characterized on the basis of elemental analysis and spectroscopic data. All of the newly synthesized target compounds were selected by the NCI forin vitrobiological evaluation. These active compounds exhibited broad spectrum of various biological activities. Most of the compounds showed potent activity.


Synthesis ◽  
2018 ◽  
Vol 51 (06) ◽  
pp. 1342-1352 ◽  
Author(s):  
Javier Izquierdo ◽  
Atul Jain ◽  
Sarki Abdulkadir ◽  
Gary Schiltz

The chromenone core is an ubiquitous group in biologically active natural products and has been extensively used in organic synthesis. Fluorine-derived compounds, including those with a trifluoromethyl group (CF3), have shown enhanced biological activities in numerous pharmaceuticals compared with their non-fluorinated analogues. 2-Trifluoromethylchromenones can be readily functionalized at the 8- and 7-positions, providing chromenones cores of high structural complexity, which are excellent precursors for numerous trifluoromethyl heterocycles.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1510
Author(s):  
Renato Dalpozzo ◽  
Raffaella Mancuso

Benzopyran and benzodihydropyran (chromane) nuclei are the core structure of many natural products, in particular flavonoids. Many compounds possessing this structure are nutraceuticals, pharmaceutical nutrients. Therefore, benzopyran and chromane scaffolds are important building blocks in organic synthesis and many efforts have been made to set up efficient methods for their synthesis. In particular, asymmetric methods are of great importance, being natural products, and generally chiral substances. This review aims to cover literature in the range 2017–first half of 2019.


2003 ◽  
Vol 75 (2-3) ◽  
pp. 259-264 ◽  
Author(s):  
R. V. A. Orru ◽  
Bas Groenendaal ◽  
J. van Heyst ◽  
Mark Hunting ◽  
C. Wesseling ◽  
...  

Acetogenins isolated from the Annonaceae family of tropical trees have drawn considerable attention owing to their broad spectrum of biological activities. They are structurally characterized by the presence of one to three tetrahydrofuran rings in the center of a long (partly hydroxylated) hydrocarbon chain that ends in a (functionalized) butenolide moiety. Here we describe some of our results toward the first asymmetric total synthesis of cis-gigantrionenin, a principal acetogenin. In this approach, an enzyme-catalyzed epoxide hydrolysis and an enzyme-triggered double cyclization are crucial and give stereoselective access to essential chiral building blocks.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3036
Author(s):  
Ashraf A. Aly ◽  
Alaa A. Hassan ◽  
Maysa M. Makhlouf ◽  
Stefan Bräse

Mercapto-substituted 1,2,4-triazoles are very interesting compounds as they play an important role in chemopreventive and chemotherapeutic effects on cancer. In recent decades, literature has been enriched with sulfur- and nitrogen-containing heterocycles which are used as a basic nucleus of different heterocyclic compounds with various biological applications in medicine and also occupy a huge part of natural products. Therefore, we shed, herein, more light on the synthesis of this interesting class and its application as a biologically active moiety. They might also be suitable as antiviral and anti-infective drugs.


2019 ◽  
Vol 16 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Renu Bala ◽  
Poonam Kumari ◽  
Sumit Sood ◽  
Karan Singh

4-Formylpyrazoles are useful building blocks in organic synthesis. This review focuses on the applications of 4-formylpyrazoles to generate a large variety of organic compounds and heterocycles such as Schiff bases, pyrazolylpyrazolines, pyrazoloquinolinones, 4H-pyrazolopyran, pyrazolylbenzoxazole, pyrazolothiadiazepines, pyrazolyloxazolone, pyrazolyloxadiazolines, pyrazolylthiadiazolines, imidazolylpyrazoles, pyrazolopyridines, chromenopyrazolones, thiopyranothiazolylpyrazoles and many others. Many of these molecules exhibit excellent biological activities.


Author(s):  
Praveen Kumar Sharma ◽  
Reena Makkar

ABSTRACTIn recent days, heterocycles and their derivatives have become strong reflection in medicinal research and pharmaceutical fields because of theirpractical pharmacological and biological activities. Organic compounds; mainly heterocyclic compounds are wealthy in natural world and containextra value because their structural subunits are established in many natural products such as enzymes, vitamins, antibiotics, acids, and hormones.Thiazine nucleuses found in compounds have variety of pharmacological activities such as antitumor, antimicrobial, antibacterial, antifungal, antiviral,and anti-inflammatory. This review spotlight on the substituted thiazines with possible antimicrobial activities that are at the present in development.Keywords: Antibacterial, Substituted thiazines, Antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document