Fluorescence in situ hybridisation

Biologia ◽  
2007 ◽  
Vol 62 (3) ◽  
Author(s):  
Martina Lakatošová ◽  
Beáta Holečková

AbstractFluorescence in situ hybridisation (FISH) is a rapid and reliable technique for chromosomal investigations that is used for a wide variety of cytogenetic purposes at present. This molecular-cytogenetic method has been developed continuously for many years. As a consequence, various modifications with different kinds of fluorescently labelled probes have been introduced to optimise the detection of DNA and RNA sequences. This review articlepaper presents the general principles of in situ hybridisation, probe labelling and examples of proper use of different kinds of probes. In addition, some newer FISH methods and their usefulness in human molecular cytogenetics are described.

Author(s):  
B.A. Hamkalo ◽  
S. Narayanswami ◽  
A.P. Kausch

The availability of nonradioactive methods to label nucleic acids an the resultant rapid and greater sensitivity of detection has catapulted the technique of in situ hybridization to become the method of choice to locate of specific DNA and RNA sequences on chromosomes and in whole cells in cytological preparations in many areas of biology. It is being applied to problems of fundamental interest to basic cell and molecular biologists such as the organization of the interphase nucleus in the context of putative functional domains; it is making major contributions to genome mapping efforts; and it is being applied to the analysis of clinical specimens. Although fluorescence detection of nucleic acid hybrids is routinely used, certain questions require greater resolution. For example, very closely linked sequences may not be separable using fluorescence; the precise location of sequences with respect to chromosome structures may be below the resolution of light microscopy(LM); and the relative positions of sequences on very small chromosomes may not be feasible.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 250
Author(s):  
Rebecca E O’Connor ◽  
Lucas G Kiazim ◽  
Claudia C Rathje ◽  
Rebecca L Jennings ◽  
Darren K Griffin

With demand rising, pigs are the world’s leading source of meat protein; however significant economic loss and environmental damage can be incurred if boars used for artificial insemination (AI) are hypoprolific (sub-fertile). Growing evidence suggests that semen analysis is an unreliable tool for diagnosing hypoprolificacy, with litter size and farrowing rate being more applicable. Once such data are available, however, any affected boar will have been in service for some time, with significant financial and environmental losses incurred. Reciprocal translocations (RTs) are the leading cause of porcine hypoprolificacy, reportedly present in 0.47% of AI boars. Traditional standard karyotyping, however, relies on animal specific expertise and does not detect more subtle (cryptic) translocations. Previously, we reported development of a multiple hybridisation fluorescence in situ hybridisation (FISH) strategy; here, we report on its use in 1641 AI boars. A total of 15 different RTs were identified in 69 boars, with four further animals XX/XY chimeric. Therefore, 4.5% had a chromosome abnormality (4.2% with an RT), a 0.88% incidence. Revisiting cases with both karyotype and FISH information, we reanalysed captured images, asking whether the translocation was detectable by karyotyping alone. The results suggest that chromosome translocations in boars may be significantly under-reported, thereby highlighting the need for pre-emptive screening by this method before a boar enters a breeding programme.


The Lancet ◽  
1999 ◽  
Vol 353 (9148) ◽  
pp. 211-212 ◽  
Author(s):  
Bruce K Patterson ◽  
Mary Ann Czerniewski ◽  
John Pottage ◽  
Michelle Agnoli ◽  
Harold Kessler ◽  
...  

1993 ◽  
Vol 62 (2-3) ◽  
pp. 181-182 ◽  
Author(s):  
H.J. Eyre ◽  
P.A. Akkari ◽  
C. Meredith ◽  
S.D. Wilton ◽  
D.C. Callen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document