Immune Cell
Recently Published Documents





2021 ◽  
Tianjiao Wang ◽  
Fang Xie ◽  
Yun-Hui Li ◽  
Bin Liang

Aims: The aim of this study was to explore the alteration in ACE2 expression and correlation between ACE2 expression and immune infiltration in clear cell renal cell carcinoma (ccRCC). Methods: The authors first analyzed the expression profiles and prognostic value of ACE2 in ccRCC patients using The Cancer Genome Atlas public database. The authors used ESTIMATE and CIBERSORT algorithms to analyze the correlation between ACE2 expression and tumor microenvironment in ccRCC samples. Results: ACE2 was correlated with sex, distant metastasis, clinical stage, tumor T stage and histological grade. Moreover, downregulation of ACE2 was correlated with unfavorable prognosis. In addition, ACE2 expression was associated with different immune cell subtypes. Conclusion: The authors' analyses suggest that ACE2 plays an important role in the development and progression of ccRCC and may serve as a potential prognostic biomarker in ccRCC patients.

2021 ◽  
Vol 11 ◽  
Qin Dang ◽  
Zaoqu Liu ◽  
Shengyun Hu ◽  
Zhuang Chen ◽  
Lingfang Meng ◽  

Colorectal cancer (CRC), a seriously threat that endangers public health, has a striking tendency to relapse and metastasize. Redox-related signaling pathways have recently been extensively studied in cancers. However, the study and potential role of redox in CRC remain unelucidated. We developed and validated a risk model for prognosis and recurrence prediction in CRC patients via identifying gene signatures driven by redox-related signaling pathways. The redox-driven prognostic signature (RDPS) was demonstrated to be an independent risk factor for patient survival (including OS and RFS) in four public cohorts and one clinical in-house cohort. Additionally, there was an intimate association between the risk score and tumor immune infiltration, with higher risk score accompanied with less immune cell infiltration. In this study, we used redox-related factors as an entry point, which may provide a broader perspective for prognosis prediction in CRC and have the potential to provide more promising evidence for immunotherapy.

2021 ◽  
Vol 10_2021 ◽  
pp. 93-102
Korotkova T.D. Korotkova ◽  
Krechetova L.V. Krechetova ◽  
Inviyaeva E.V. Inviyaeva ◽  
Vtorushina V.V. Vtorushina V ◽  
Vanko L.V. Vanko ◽  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Fei Liu ◽  
Xiaopeng Yu ◽  
Guijin He

Background. We analyzed the n6-methyladenosine (m6A) modification patterns of immune cells infiltrating the tumor microenvironment of breast cancer (BC) to provide a new perspective for the early diagnosis and treatment of BC. Methods. Based on 23 m6A regulatory factors, we identified m6A-related gene characteristics and m6A modification patterns in BC through unsupervised cluster analysis. To examine the differences in biological processes among various m6A modification modes, we performed genomic variation analysis. We then quantified the relative infiltration levels of different immune cell subpopulations in the tumor microenvironment of BC using the CIBERSORT algorithm and single-sample gene set enrichment analysis. Univariate Cox analysis was used to screen for m6A characteristic genes related to prognosis. Finally, we evaluated the m6A modification pattern of patients with a single BC by constructing the m6Ascore based on principal component analysis. Results. We identified three different m6A modification patterns in 2128 BC samples. A higher abundance of the immune infiltration of the m6Acluster C was indicated by the results of CIBERSORT and the single-sample gene set enrichment analysis. Based on the m6A characteristic genes obtained through screening, the m6Ascore was determined. The BC patients were segregated into m6Ascore groups of low and high categories, which revealed significant survival benefits among patients with low m6Ascores. Additionally, the high-m6Ascore group had a higher mutation frequency and was associated with low PD-L1 expression, and the m6Ascore and tumor mutation burden showed a positive correlation. In addition, treatment effects were better in patients in the high-m6Ascore group. Conclusions. In case of a single patient with BC, the immune cell infiltration characteristics of the tumor microenvironment and the m6A methylation modification pattern could be evaluated using the m6Ascore. Our results provide a foundation for improving personalized immunotherapy of BC.

Aymam C. de Figueiredo ◽  
Stefanny C. M. Titon ◽  
João C. Cyrino ◽  
Letícia A. K. Nogueira ◽  
Fernando R. Gomes

Mammals show immune up-regulation and increased plasma and local (gastrointestinal tract) concentrations of some immunoregulatory hormones, such as corticosterone and melatonin, after feeding. However, little is known about the endocrine and immune modulation in the postprandial period of ectothermic animals. This study investigated the effects of feeding on endocrine and immune responses in the bullfrog (Lithobates catesbeianus). Frogs were fasted for 10 days and divided into two groups: fasted and fed with fish feed (5% of body mass). Blood and gastrointestinal tract tissues (stomach and intestine) were collected at 6, 24, 48, 96, and 168 h to measure neutrophil/lymphocyte ratio, plasma bacterial killing ability, phagocytosis of blood leukocytes, plasma corticosterone and melatonin; and stomach and intestine melatonin. Feeding increased plasma corticosterone at 24 h and decreased at 168 h; and increased neutrophil/lymphocyte ratio at 6, 24, and 96 h. We also observed decreased bacterial killing ability 48 h after feeding. Stomach melatonin increased after 17-days fasting. We show that feeding activates the hypothalamic-pituitary-interrenal axis and promotes transient immunosuppression, without stimulating an inflammatory response. Increased CORT may mobilize energy to support the digestive processes and melatonin may protect the stomach during fasting. We conclude feeding modulate secretion of immunoregulatory hormones, increasing plasma CORT levels in the beginning followed by a decrease in the end of meal digestion; and systemic immune cell redistribution, increasing NL ratio during almost all meal digestion in bullfrogs. Also, fasting modulate secretion of melatonin in the stomach.

2021 ◽  
Vol 11 ◽  
Shun Zhang ◽  
Junhui Wan ◽  
Minjie Chen ◽  
Desheng Cai ◽  
Junlan Xu ◽  

Tumor-infiltrating immune cells, associated with tumor progression, are promising prognostic biomarkers. However, the relationship between levels of gene expression and that of immune cell infiltration in cervical cancer prognosis is unknown. In this study, three cervical cancer gene expression microarrays (GSE6791, GSE63678 and GSE55940) were obtained from the GEO database. The IDO1 gene was identified by differentially expressed gene screening. The gene expression profiles of TCGA and GTEx databases along with comprehensive bioinformatics analysis identified that the IDO1 gene was upregulated in cervical cancer with significant difference in expression at different N stages. In addition, it was also upregulated in HPV16 positive sample. The pan-cancer analysis identified that IDO1 was highly expressed in most cancers. TIMER analysis revealed that the expression of IDO1 in CESC shows positive correlation with CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells. IDO1 expression showed remarkable positive correlation with all immune cell markers except M1 macrophages. CD8+ T cell infiltration GSEA results showed that IDO1 was mainly associated with tumor immune-related signaling pathways.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Shannon Rausser ◽  
Caroline Trumpff ◽  
Marlon A McGill ◽  
Alex Junker ◽  
Wei Wang ◽  

Using a high-throughput mitochondrial phenotyping platform to quantify multiple mitochondrial features among molecularly-defined immune cell subtypes, we quantify the natural variation in citrate synthase, mitochondrial DNA copy number (mtDNAcn), and respiratory chain enzymatic activities in human neutrophils, monocytes, B cells, and naïve and memory T lymphocyte subtypes. In mixed peripheral blood mononuclear cells (PBMCs) from the same individuals, we show to what extent mitochondrial measures are confounded by both cell type distributions and contaminating platelets. Cell subtype-specific measures among women and men spanning 4 decades of life indicate potential age- and sex-related differences, including an age-related elevation in mtDNAcn, which are masked or blunted in mixed PBMCs. Finally, a proof-of-concept, repeated-measures study in a single individual validates cell type differences and also reveals week-to-week changes in mitochondrial activities. Larger studies are required to validate and mechanistically extend these findings. These mitochondrial phenotyping data build upon established immunometabolic differences among leukocyte sub-populations, and provide foundational quantitative knowledge to develop interpretable blood-based assays of mitochondrial health.

2021 ◽  
Vol 7 (1) ◽  
Jiping Liu ◽  
Junbang Wang ◽  
Jinfang Xu ◽  
Han Xia ◽  
Yue Wang ◽  

AbstractLarge-scale COVID-19 vaccinations are currently underway in many countries in response to the COVID-19 pandemic. Here, we report, besides generation of neutralizing antibodies, consistent alterations in hemoglobin A1c, serum sodium and potassium levels, coagulation profiles, and renal functions in healthy volunteers after vaccination with an inactivated SARS-CoV-2 vaccine. Similar changes had also been reported in COVID-19 patients, suggesting that vaccination mimicked an infection. Single-cell mRNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) before and 28 days after the first inoculation also revealed consistent alterations in gene expression of many different immune cell types. Reduction of CD8+ T cells and increase in classic monocyte contents were exemplary. Moreover, scRNA-seq revealed increased NF-κB signaling and reduced type I interferon responses, which were confirmed by biological assays and also had been reported to occur after SARS-CoV-2 infection with aggravating symptoms. Altogether, our study recommends additional caution when vaccinating people with pre-existing clinical conditions, including diabetes, electrolyte imbalances, renal dysfunction, and coagulation disorders.

2021 ◽  
Vol 12 ◽  
Jinman Zhong ◽  
Hang Wu ◽  
Xiaoyin Bu ◽  
Weiru Li ◽  
Shengchun Cai ◽  

Acute myeloid leukemia (AML) is a highly heterogeneous hematologic neoplasm with poor survival outcomes. However, the routine clinical features are not sufficient to accurately predict the prognosis of AML. The expression of hypoxia-related genes was associated with survival outcomes of a variety of hematologic and lymphoid neoplasms. We established an 18-gene signature-based hypoxia-related prognosis model (HPM) and a complex model that consisted of the HPM and clinical risk factors using machine learning methods. Both two models were able to effectively predict the survival of AML patients, which might contribute to improving risk classification. Differentially expressed genes analysis, Gene Ontology (GO) categories, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to reveal the underlying functions and pathways implicated in AML development. To explore hypoxia-related changes in the bone marrow immune microenvironment, we used CIBERSORT to calculate and compare the proportion of 22 immune cells between the two groups with high and low hypoxia-risk scores. Enrichment analysis and immune cell composition analysis indicated that the biological processes and molecular functions of drug metabolism, angiogenesis, and immune cell infiltration of bone marrow play a role in the occurrence and development of AML, which might help us to evaluate several hypoxia-related metabolic and immune targets for AML therapy.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12315
Bing-Bing Shang ◽  
Jun Chen ◽  
Zhi-Guo Wang ◽  
Hui Liu

Background Hepatocellular carcinoma (HCC) is an inflammation-associated tumor involved in immune tolerance and evasion in the immune microenvironment. Heat shock proteins (HSPs) are involved in the occurrence, progression, and immune regulation of tumors. Therefore, HSPs have been considered potential therapeutic targets. Here, we aimed to elucidate the value of HSP family A (Hsp70) member 4 (HSPA4) in the diagnosis and predicting prognosis of HCC, and its relationship with immune cell infiltration, immune cell biomarkers, and immune checkpoints. Gene mutation, DNA methylation, and the pathway involved in HCC were also analyzed. Methods The gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to compare HSPA4 expression, and the results were confirmed by immunohistochemical staining of clinical samples. R package was used to analyze the correlation between HSPA4 and cancer stage, and to establish receiver operating characteristic (ROC) curve of diagnosis, time-dependent survival ROC curve, and a nomogram model. cBioPortal and MethSurv were used to identify genetic alterations and DNA methylation, and their effect on prognosis. The Tumor Immune Estimation Resource (TIMER) was used to analyze immune cell infiltration, immune cell biomarkers, and immune checkpoints. The STRING database was used to analyze protein–protein interaction network information. Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the functions of HSPA4 and its functional partner genes. Results Overexpression of HSPA4 was identified in 25 cancers. Overexpression of HSPA4 considerably correlated with cancer stage and alpha-fetoprotein (AFP) level in HCC. Patients with higher HSPA4 expression showed poorer prognosis. HSPA4 expression can accurately identify tumor from normal tissue (AUC = 0.957). The area under 1-, 3-, and 5-year survival ROCs were above 0.6. The HSPA4 genetic alteration rate was 1.3%. Among the 14 DNA methylation CpG sites, seven were related to the prognosis of HCC. HSPA4 was positively related to immune cell infiltration and immune checkpoints (PD-1 and CTLA-4) in HCC. The KEGG pathway enrichment analysis revealed HSPA4 enrichment in antigen processing and presentation together with HSPA8 and HSP90AA1. We verified the value of HSPA4 in the diagnosis and predicting prognosis of HCC. HSPA4 may not only participate in the occurrence and progression but also the immune regulation of HCC. Therefore, HSPA4 can be a potential diagnostic and prognostic biomarker and a therapeutic target for HCC.

Sign in / Sign up

Export Citation Format

Share Document