immune cell
Recently Published Documents


TOTAL DOCUMENTS

10525
(FIVE YEARS 6621)

H-INDEX

138
(FIVE YEARS 32)

2022 ◽  
Vol 12 ◽  
Author(s):  
An-Ping Shi ◽  
Xi-Yang Tang ◽  
Yan-Lu Xiong ◽  
Kai-Fu Zheng ◽  
Yu-Jian Liu ◽  
...  

LAG3 is the most promising immune checkpoint next to PD-1 and CTLA-4. High LAG3 and FGL1 expression boosts tumor growth by inhibiting the immune microenvironment. This review comprises four sections presenting the structure/expression, interaction, biological effects, and clinical application of LAG3/FGL1. D1 and D2 of LAG3 and FD of FGL1 are the LAG3-FGL1 interaction domains. LAG3 accumulates on the surface of lymphocytes in various tumors, but is also found in the cytoplasm in non-small cell lung cancer (NSCLC) cells. FGL1 is found in the cytoplasm in NSCLC cells and on the surface of breast cancer cells. The LAG3-FGL1 interaction mechanism remains unclear, and the intracellular signals require elucidation. LAG3/FGL1 activity is associated with immune cell infiltration, proliferation, and secretion. Cytokine production is enhanced when LAG3/FGL1 are co-expressed with PD-1. IMP321 and relatlimab are promising monoclonal antibodies targeting LAG3 in melanoma. The clinical use of anti-FGL1 antibodies has not been reported. Finally, high FGL1 and LAG3 expression induces EGFR-TKI and gefitinib resistance, and anti-PD-1 therapy resistance, respectively. We present a comprehensive overview of the role of LAG3/FGL1 in cancer, suggesting novel anti-tumor therapy strategies.


2022 ◽  
Vol 12 ◽  
Author(s):  
Stefanie Dietz ◽  
Julian Schwarz ◽  
Ana Velic ◽  
Irene González-Menéndez ◽  
Leticia Quintanilla-Martinez ◽  
...  

During pregnancy, maternal immune system has to balance tightly between protection against pathogens and tolerance towards a semi-allogeneic organism. Dysfunction of this immune adaptation can lead to severe complications such as pregnancy loss, preeclampsia or fetal growth restriction. In the present study we analyzed the impact of the murine MHC class Ib molecule Qa-2 on pregnancy outcome in vivo. We demonstrate that lack of Qa-2 led to intrauterine growth restriction and increased abortion rates especially in late pregnancy accompanied by a disturbed trophoblast invasion and altered spiral artery remodeling as well as protein aggregation in trophoblast cells indicating a preeclampsia-like phenotype. Furthermore, lack of Qa-2 caused imbalanced immunological adaptation to pregnancy with altered immune cell and especially T-cell homeostasis, reduced Treg numbers and decreased accumulation and functional activation of myeloid-derived suppressor cells. Lastly, we show that application of sHLA-G reduced abortion rates in Qa-2 deficient mice by inducing MDSC. Our results highlight the importance of an interaction between HLA-G and MDSC for pregnancy success and the therapeutic potential of HLA-G for treatment of immunological pregnancy complications.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yi Chen ◽  
Didi Chen ◽  
Qiang Wang ◽  
Yajing Xu ◽  
Xiaowei Huang ◽  
...  

BackgroundCancer immunotherapy has produced significant positive clinical effects in a variety of tumor types. However, pancreatic ductal adenocarcinoma (PDAC) is widely considered to be a “cold” cancer with poor immunogenicity. Our aim is to determine the detailed immune features of PDAC to seek new treatment strategies.MethodsThe immune cell abundance of PDAC patients was evaluated with the single-sample gene set enrichment analysis (ssGSEA) using 119 immune gene signatures. Based on these data, patients were classified into different immune subtypes (ISs) according to immune gene signatures. We analyzed their response patterns to immunotherapy in the datasets, then established an immune index to reflect the different degrees of immune infiltration through linear discriminant analysis (LDA). Finally, potential prognostic markers associated with the immune index were identified based on weighted correlation network analysis (WGCNA) that was functionally validated in vitro.ResultsThree ISs were identified in PDAC, of which IS3 had the best prognosis across all three cohorts. The different expressions of immune profiles among the three ISs indicated a distinct responsiveness to immunotherapies in PDAC subtypes. By calculating the immune index, we found that the IS3 represented higher immune infiltration, while IS1 represented lower immune infiltration. Among the investigated signatures, we identified ZNF185, FANCG, and CSTF2 as risk factors associated with immune index that could potentially facilitate diagnosis and could be therapeutic target markers in PDAC patients.ConclusionsOur findings identified immunologic subtypes of PDAC with distinct prognostic implications, which allowed us to establish an immune index to represent the immune infiltration in each subtype. These results show the importance of continuing investigation of immunotherapy and will allow clinical workers to personalized treatment more effectively in PDAC patients.


2022 ◽  
Author(s):  
Masahiro Nakano ◽  
Mineto Ota ◽  
Yusuke Takeshima ◽  
Yukiko Iwasaki ◽  
Hiroaki Hatano ◽  
...  

Systemic lupus erythematosus (SLE) is a complex and heterogeneous autoimmune disease involving multiple immune cells. A major hurdle to the elucidation of SLE pathogenesis is our limited understanding of dysregulated gene expression linked to various clinical statuses with a high cellular resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data covering 27 immune cell types from 159 SLE and 89 healthy donors. We first profiled two distinct cell-type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting disease establishment and exacerbation, respectively. We next identified candidate biological processes unique to each signature. This study suggested the clinical value of disease-activity signatures, which were associated with organ involvement and responses to therapeutic agents such as belimumab. However, disease-activity signatures were less enriched around SLE risk variants than disease-state signatures, suggesting that the genetic studies to date may not well capture clinically vital biology in SLE. Together, we identified comprehensive gene signatures of SLE, which will provide essential foundations for future genomic, genetic, and clinical studies.


2022 ◽  
Author(s):  
Jagannath Padmanabhan ◽  
Kellen Chen ◽  
Dharshan Sivaraj ◽  
Britta A Kuehlmann ◽  
Clark A Bonham ◽  
...  

For decades, it has been assumed that the foreign body response (FBR) to biomedical implants is primarily a reaction to the chemical and mechanical properties of the implant. Here, we show for the first time that a third independent variable, allometric tissue-scale forces (which increase exponentially with body size), can drive the biology of FBR in humans. We first demonstrate that pathological FBR in humans is mediated by immune cell-specific Rac2 mechanotransduction signaling, independent of implant chemistry or mechanical properties. We then show that mice, which are typically poor models of human FBR, can be made to induce a strikingly human-like pathological FBR by altering these extrinsic tissue forces. Altering these extrinsic tissue forces alone activates Rac2 signaling in a unique subpopulation of immune cells and results in a human-like pathological FBR at the molecular, cellular, and local tissue levels. Finally, we demonstrate that blocking Rac2 signaling negates the effect of increased tissue forces, dramatically reducing FBR. These findings highlight a previously unsuspected mechanism for pathological FBR and may have profound implications for the design and safety of all implantable devices in humans.


2022 ◽  
Vol 23 (2) ◽  
pp. 937
Author(s):  
Laura Cervera ◽  
Carmen González-Fernández ◽  
Marta Arizcun ◽  
Alberto Cuesta ◽  
Elena Chaves-Pozo

The protozoan parasite Cryptocaryon irritans causes marine white spot disease in a wide range of fish hosts, including gilthead seabream, a very sensitive species with great economic importance in the Mediterranean area. Thus, we aimed to evaluate the immunity of gilthead seabream after a severe natural outbreak of C. irritans. Morphological alterations and immune cell appearance in the gills were studied by light microscopy and immunohistochemical staining. The expression of several immune-related genes in the gills and head kidney were studied by qPCR, including inflammatory and immune cell markers, antimicrobial peptides (AMP), and cell-mediated cytotoxicity (CMC) molecules. Serum humoral innate immune activities were also assayed. Fish mortality reached 100% 8 days after the appearance of the C. irritans episode. Gill filaments were engrossed and packed without any space between filaments and included parasites and large numbers of undifferentiated and immune cells, namely acidophilic granulocytes. Our data suggest leukocyte mobilization from the head kidney, while the gills show the up-regulated transcription of inflammatory, AMPs, and CMC-related molecules. Meanwhile, only serum bactericidal activity was increased upon infection. A potent local innate immune response in the gills, probably orchestrated by AMPs and CMC, is triggered by a severe natural outbreak of C. irritans.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruoyan Cao ◽  
Lin Cui ◽  
Jiayu Zhang ◽  
Xianyue Ren ◽  
Bin Cheng ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play a critical role in innate and adaptive immune responses. Thus, we aimed to identify ideal subtypes for head and neck squamous cell carcinoma (HNSCC) based on immune-related lncRNAs. Methods TCGA HNSCC cohort was divided into two datasets (training and validation dataset), and 960 previously characterized immune-related lncRNAs were extracted for non-negative matrix factorization analysis. We characterized our HNSCC subtypes based on biological behaviors, immune landscape and response to immunotherapy in both training and validation cohort. A lncRNA-signature was generated to predict our HNSCC subtypes, and essential lncRNAs involved in tumor microenvironment (TME) were identified. Results We developed and validated two HNSCC subtypes (C1 and C2) based on the 70 lncRNAs in the training and validation cohort. C2 subtype displayed good prognosis, high immune cell infiltration, immune-related genes expression and sensitivity to PD-1 blockade. C1 subtype was associated with high activity of mTORC1 signaling and glycolysis as well as high fraction of inactive immune cells. Finally, we generated a 31-lncRNA signature that could predict our above subtypes with high accurate. Additionally, TRG-AS1 was identified as the essential lncRNA involving TME formation. Knockdown of TRG-AS1 inhibited the expression of HLA-A, HLA-B, HLA-C, CXCL9, CXCL10 and CXCL11. High expression of TRG-AS1 indicated a favorable prognosis in HNSCC and anti-PD-L1 cohort (IMvigor210). Conclusions Our study establishes a novel HNSCC classification on the basis of 31-lncRNA, helping to identify beneficiaries for anti-PD-1 treatment. In addition, a critical lncRNA TRG-AS1 is identified as a new potential prognosis biomarker as well as therapeutic target.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Yao Peng ◽  
Hui Wang ◽  
Qi Huang ◽  
Jingjing Wu ◽  
Mingjun Zhang

Abstract Background Long noncoding RNAs (lncRNAs) are important regulators of gene expression and can affect a variety of physiological processes. Recent studies have shown that immune-related lncRNAs play an important role in the tumour immune microenvironment and may have potential application value in the treatment and prognosis prediction of tumour patients. Epithelial ovarian cancer (EOC) is characterized by a high incidence and poor prognosis. However, there are few studies on immune-related lncRNAs in EOC. In this study, we focused on immune-related lncRNAs associated with survival in EOC. Methods We downloaded mRNA data for EOC patients from The Cancer Genome Atlas (TCGA) database and mRNA data for normal ovarian tissue from the Genotype-Tissue Expression (GTEx) database and identified differentially expressed genes through differential expression analysis. Immune-related lncRNAs were obtained through intersection and coexpression analysis of differential genes and immune-related genes from the Immunology Database and Analysis Portal (ImmPort). Samples in the TCGA EOC cohort were randomly divided into a training set, validation set and combination set. In the training set, Cox regression analysis and LASSO regression were performed to construct an immune-related lncRNA signature. Kaplan–Meier survival analysis, time-dependent ROC curve analysis, Cox regression analysis and principal component analysis were performed for verification in the training set, validation set and combination set. Further studies of pathways and immune cell infiltration were conducted through Gene Set Enrichment Analysis (GSEA) and the Timer data portal. Results An immune-related lncRNA signature was identified in EOC, which was composed of six immune-related lncRNAs (KRT7-AS, USP30-AS1, AC011445.1, AP005205.2, DNM3OS and AC027348.1). The signature was used to divide patients into high-risk and low-risk groups. The overall survival of the high-risk group was lower than that of the low-risk group and was verified to be robust in both the validation set and the combination set. The signature was confirmed to be an independent prognostic biomarker. Principal component analysis showed the different distribution patterns of high-risk and low-risk groups. This signature may be related to immune cell infiltration (mainly macrophages) and differential expression of immune checkpoint-related molecules (PD-1, PDL1, etc.). Conclusions We identified and established a prognostic signature of immune-related lncRNAs in EOC, which will be of great value in predicting the prognosis of clinical patients and may provide a new perspective for immunological research and individualized treatment in EOC.


2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
Qiaoqiao Li ◽  
Xueping Gao ◽  
Xueshan Luo ◽  
Qingrui Wu ◽  
Jintao He ◽  
...  

Cardioembolic stroke (CS) is the most common type of ischemic stroke in the clinic, leading to high morbidity and mortality worldwide. Although many studies have been conducted, the molecular mechanism underlying CS has not been fully grasped. This study was aimed at exploring the molecular mechanism of CS using comprehensive bioinformatics analysis and providing new insights into the pathophysiology of CS. We downloaded the public datasets GSE58294 and GSE16561. Differentially expressed genes (DEGs) were screened via the limma package using R software. CIBERSORT was used to estimate the proportions of 22 immune cells based on the gene expression profiling of CS patients. Using weighted gene correlation network analysis (WGCNA) to cluster the genes into different modules and detect relationships between modules and immune cell types, hub genes were identified based on the intersection of the protein-protein interaction (PPI) network analysis and WGCNA, and their clinical significance was then verified using another independent dataset GSE16561. Totally, 319 genes were identified as DEGs and 5413 genes were clustered into nine modules using WGCNA. The blue module, with the highest correlation coefficient, was identified as the key module associated with stroke, neutrophils, and B cells naïve. Based on the PPI analysis and WGCNA, five genes (MCEMP1, CLEC4D, GPR97, TSPAN14, and FPR2) were identified as hub genes. Correlation analysis indicated that hub genes had general association with infiltration-related immune cells. ROC analysis also showed they had potential clinical significance. The results were verified using another dataset, which were consistent with our analysis. Five crucial genes determined using integrative bioinformatics analysis might play significant roles in the pathophysiological mechanism in CS and be potential targets for pharmaceutic therapies.


2022 ◽  
Vol 23 (2) ◽  
pp. 882
Author(s):  
Maja Ptasiewicz ◽  
Ewelina Grywalska ◽  
Paulina Mertowska ◽  
Izabela Korona-Głowniak ◽  
Agata Poniewierska-Baran ◽  
...  

The oral cavity is inhabited by a wide spectrum of microbial species, and their colonization is mostly based on commensalism. These microbes are part of the normal oral flora, but there are also opportunistic species that can cause oral and systemic diseases. Although there is a strong exposure to various microorganisms, the oral mucosa reduces the colonization of microorganisms with high rotation and secretion of various types of cytokines and antimicrobial proteins such as defensins. In some circumstances, the imbalance between normal oral flora and pathogenic flora may lead to a change in the ratio of commensalism to parasitism. Healthy oral mucosa has many important functions. Thanks to its integrity, it is impermeable to most microorganisms and constitutes a mechanical barrier against their penetration into tissues. Our study aims to present the role and composition of the oral cavity microbiota as well as defense mechanisms within the oral mucosa which allow for maintaining a balance between such numerous species of microorganisms. We highlight the specific aspects of the oral mucosa protecting barrier and discuss up-to-date information on the immune cell system that ensures microbiota balance. This study presents the latest data on specific tissue stimuli in the regulation of the immune system with particular emphasis on the resistance of the gingival barrier. Despite advances in understanding the mechanisms regulating the balance on the microorganism/host axis, more research is still needed on how the combination of these diverse signals is involved in the regulation of immunity at the oral mucosa barrier.


Sign in / Sign up

Export Citation Format

Share Document