Improve 3D laser scanner measurements accuracy using a FFBP neural network with Widrow-Hoff weight/bias learning function

2014 ◽  
Vol 22 (4) ◽  
Author(s):  
J. Rodríguez-Quiñonez ◽  
O. Sergiyenko ◽  
D. Hernandez-Balbuena ◽  
M. Rivas-Lopez ◽  
W. Flores-Fuentes ◽  
...  

AbstractMany laser scanners depend on their mechanical construction to guarantee their measurements accuracy, however, the current computational technologies allow us to improve these measurements by mathematical methods implemented in neural networks. In this article we are going to introduce the current laser scanner technologies, give a description of our 3D laser scanner and adjust their measurement error by a previously trained feed forward back propagation (FFBP) neural network with a Widrow-Hoff weight/bias learning function. A comparative analysis with other learning functions such as the Kohonen algorithm and gradient descendent with momentum algorithm is presented. Finally, computational simulations are conducted to verify the performance and method uncertainty in the proposed system.

Technologies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 30 ◽  
Author(s):  
Muhammad Fayaz ◽  
Habib Shah ◽  
Ali Aseere ◽  
Wali Mashwani ◽  
Abdul Shah

Energy is considered the most costly and scarce resource, and demand for it is increasing daily. Globally, a significant amount of energy is consumed in residential buildings, i.e., 30–40% of total energy consumption. An active energy prediction system is highly desirable for efficient energy production and utilization. In this paper, we have proposed a methodology to predict short-term energy consumption in a residential building. The proposed methodology consisted of four different layers, namely data acquisition, preprocessing, prediction, and performance evaluation. For experimental analysis, real data collected from 4 multi-storied buildings situated in Seoul, South Korea, has been used. The collected data is provided as input to the data acquisition layer. In the pre-processing layer afterwards, several data cleaning and preprocessing schemes are applied to the input data for the removal of abnormalities. Preprocessing further consisted of two processes, namely the computation of statistical moments (mean, variance, skewness, and kurtosis) and data normalization. In the prediction layer, the feed forward back propagation neural network has been used on normalized data and data with statistical moments. In the performance evaluation layer, the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE) have been used to measure the performance of the proposed approach. The average values for data with statistical moments of MAE, MAPE, and RMSE are 4.3266, 11.9617, and 5.4625 respectively. These values of the statistical measures for data with statistical moments are less as compared to simple data and normalized data which indicates that the performance of the feed forward back propagation neural network (FFBPNN) on data with statistical moments is better when compared to simple data and normalized data.


2011 ◽  
Vol 94 (1) ◽  
pp. 322-326
Author(s):  
Mohammadreza Khanmohammadi ◽  
Amir Bagheri Garmarudi ◽  
Mohammad Babaei Rouchi ◽  
Nafiseh Khoddami

Abstract A method has been established for simultaneous determination of sodium sulfate, sodium carbonate, and sodium tripolyphosphate in detergent washing powder samples based on attenuated total reflectance Fourier transform IR spectrometry in the mid-IR spectral region (800–1550 cm−1). Genetic algorithm (GA) wavelength selection followed by feed forward back-propagation artificial neural network (BP-ANN) was the chemometric approach. Root mean square error of prediction for BP-ANN and GA-BP-ANN was 0.0051 and 0.0048, respectively. The proposed method is simple, with no tedious pretreatment step, for simultaneous determination of the above-mentioned components in commercial washing powder samples.


2012 ◽  
Vol 576 ◽  
pp. 91-94 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz H.F. Al Hazza ◽  
M.Y. Suprianto ◽  
Muhammad Riza

Machining of hardened steel at high cutting speeds produces high temperatures in the cutting zone, which affects the surface quality and cutting tool life. Thus, predicting the temperature in early stage becomes utmost importance. This research presents a neural network model for predicting the cutting temperature in the CNC end milling process. The Artificial Neural Network (ANN) was applied as an effective tool for modeling and predicting the cutting temperature. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the cutting temperature. The artificial neural network (ANN) was applied to predict the cutting temperature. Twenty hidden layer has been used with feed forward back propagation hierarchical neural networks were designed with Matlab2009b Neural Network Toolbox. The results show a high correlation between the predicted and the observed temperature which indicates the validity of the models.


2015 ◽  
Vol 19 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Ehsan Momeni ◽  
Ramli Nazir ◽  
Danial Jahed Armaghani ◽  
Harnedi Maizir

<p class="MsoNormal" style="text-align: justify; line-height: 200%;">Axial bearing capacity (ABC) of piles is usually determined by static load test (SLT). However, conducting SLT is costly and time-consuming. High strain dynamic pile testing (HSDPT) which is provided by pile driving analyzer (PDA) is a more recent approach for predicting the ABC of piles. In comparison to SLT, PDA test is quick and economical. Implementing feed forward back-propagation artificial neural network (ANN) for solving geotechnical problems has recently gained attention mainly due to its ability in finding complex nonlinear relationships among different parameters. In this study, an ANN-based predictive model for estimating ABC of piles and its distribution is proposed. For network construction purpose, 36 PDA tests were performed on various concrete piles in different project sites. The PDA results, pile geometrical characteristics as well as soil investigation data were used for training the ANN models. Findings indicate the feasibility of ANN in predicting ultimate, shaft and tip bearing resistances of piles. The coefficients of determination, R², equal to 0.941, 0.936, and 0.951 for testing data reveal that the shaft, tip and ultimate bearing capacities of piles predicted by ANN-based model are in close agreement with those of HSDPT. By using sensitivity analysis, it was found that the length and area of the piles are dominant factors in the proposed predictive model.</p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"> </p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"><strong>Resumen</strong></p><p class="MsoNormal" style="text-align: justify; line-height: 200%;">La Capacidad Axial de Soporte (ABC, en inglés) de un pilote de construcción se determina usualmente a través de una Prueba de Carga Estática (SLT, inglés). Sin embargo, estas pruebas son costosas y demandan tiempo. La evaluación de las Dinámicas de Alto Esfuerzo de Pilotes (HSDPT, inglés), que la provee el programa de Análisis de Excavación (PDA, inglés), es una forma de aproximación más reciente para preveer la Capacidad Axial de Soporte. En comparación con la Prueba de Cargas Estática, la evaluación PDA es rápida y económica. La implementación de Redes Neuronales Arficiales (ANN, en inglés) que permita resolver problemas geotécnicos ha ganado atención recientemente debido a su posibilidad de hallar relaciones no lineales entre los diferentes parámetros. En este estudio se propone un modelo predictivo ANN para estimar la Capacidad Axial de Soporte de pilotes y su distribución. Para fines de una red de construcción se realizaron 36 pruebas PDA en pilotes de diferentes proyectos. Los resultados de los Análisis de Excavación, las características geométricas de los pilotes, al igual que los datos de investigación del suelo se utilizaron para probar los modelos ANN. Los resultados indican la viabilidad del modelo ANN en predecir la resistencia de los pilotes. Los coeficientes de correlación, R², que alcanzaron 0.941, 09.36 y 0.951 para la evaluación de los datos, revelan que la capacidad del pilotaje en el último rodamiento, en el cojinete del eje y en la punta que se predijeron con el modelo ANN concuerda con las establecidas a través del HSDPT. A través del análisis de respuesta se determinó que la longitud y el área de los pilotes son factores dominantes en el modelo predictivo propuesto.</p>


Sign in / Sign up

Export Citation Format

Share Document