cutting temperature
Recently Published Documents


TOTAL DOCUMENTS

978
(FIVE YEARS 264)

H-INDEX

37
(FIVE YEARS 6)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 154
Author(s):  
Manuela De Maddis ◽  
Vincenzo Lunetto ◽  
Valentino Razza ◽  
Pasquale Russo Spena

The machining of titanium alloys always raises issues because of their peculiar chemical and physical characteristics as compared to traditional steel or aluminum alloys. A proper selection of parameters and their monitoring during the cutting operation makes it possible to minimize the surface roughness and cutting force. In this experimental study, infrared thermography was used as a control parameter of the surface roughness of Ti6A4V in dry finish turning. An analysis of variance was carried out to determine the effect of the main cutting parameters (cutting speed and feed rate) on the surface roughness and cutting temperature. In the examined range of the machining parameters, cutting speed and feed were found to have a primary effect on the surface roughness of the machined parts. Cutting speed also significantly affected the temperature of the cutting region, while feed was of second order. Higher cutting speeds and intermediate feed values gave the best surface roughness. A regression analysis defined some models to relate the cutting temperature and surface roughness to the machining parameters. Infrared thermography demonstrated that the cutting temperature could be related to roughness.


Author(s):  
Mehmet Alper Sofuoglu ◽  
Fatih Hayati Çakir

Several methods have been developed in order to improve the traditional machining processes and machining outputs. In this study, the effect of the magnetic field on the turning process was investigated. AISI-4140 was machined with different cutting speeds and magnetic flux density magnitudes. The magnetic field was generated with neodymium magnets. Machining stability, surface roughness, and maximum cutting temperature were measured. Additionally, chip shapes were examined. The machining stability was determined by measuring the vibration amplitude and other vibrational parameters (natural frequency, stiffness, and damping coefficients). Conventional turning and magnetic assisted turning were performed under the same cutting parameters consecutively, and the results were compared. According to the results, it was observed that neodymium magnets attached to the cutting tool improve machining stability and damping properties. Surface roughness was decreased between 6%–10% in magnetic assisted turning. Furthermore, it has been observed that the maximum cutting temperatures have been increased between 10%–45% in the magnetic assisted machining. Besides, it can be said that magnets contribute to improving chip control by collecting the chips on them while machining AISI-4140 steel.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Shafahat Ali ◽  
Said Abdallah ◽  
Salman Pervaiz

The cutting tool heats up during the cutting of high-performance super alloys and it negatively affects the life of the cutting tool. Improved tool life can enhance both the machinability and sustainability of the cutting process. To improve the tool life preferably cutting fluids are utilized. However, the majority of cutting fluids are non-biodegradable in nature and pose harmful threats to the environment. It has been established in the metal cutting literature that introducing microgrooves at the cutting tool rake face can significantly reduce the coefficient of friction (COF). Reduction in the COF promotes anti-adhesive behavior that improves the tool life. The current study numerically investigates the orthogonal cutting process of AISI 630 Stainless Steel using different micro grooved cutting tools. Results of the numerical simulations point to the positive influence of micro grooves on tool life. The results of the main effects found that the cutting temperature was decreased by approximately 10% and 7% with rectangular and triangular micro grooved tools, respectively. Over machining performance indicated that rectangular micro groove tools provided comparatively better performance.


2022 ◽  
pp. 469-505
Author(s):  
Mohammadali Kadivar ◽  
Bahman Azarhoushang

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110704
Author(s):  
Rengiah Robinson Gnanadurai ◽  
Solomon Mesfin

In this work, an innovative nanocutting fluid, based on coconut oil was developed by dispersing silver nanoparticles (AgNPs) of size less than 50 nm. The tribological and physical properties of the prepared nanocutting fluid with different volumes of silver nanoparticles were studied. It was found that the addition of 4% by volume of nanoparticles enhanced the properties of the nanocutting fluid compared to the other concentrations studied, thus demonstrating its excellent tribological performance. The effect of the newly developed nanocutting fluid with 4% of silver nanoparticles on cutting performance was also investigated while machining AISI4340 steel with minimal fluid application. Results revealed that the cutting force, cutting temperature, and tool wear are reduced on an average by 22.6%, 12.6%, and 5.3% respectively. It was evident that efficient cooling and lubrication of nanocutting fluid dispersed with silver nanoparticles improved the cutting performance. The outcomes of this work can be considered as a development toward eco-friendly and sustainable machining.


2021 ◽  
Vol 3 (2) ◽  
pp. 52-63
Author(s):  
A. Bespalova ◽  
◽  
O. Dashkovskaya ◽  
O. Faizulyna ◽  
V. Lebedev ◽  
...  

The advantage of cutting stone building materials with SSM (synthetic superhard materials) wheels is that, first of all, it is possible to obtain high processing productivity and dimensional stability, which are 3..5 and 50…100 times higher than those of traditional tools based on carborundum, respectively. The study of the process of cutting stone materials with CBN (cubic boron nitrite) wheels is aimed at establishing force dependences, determining the cutting power and heating temperature of the cutting disc during operation. The forces were measured using a tensometric dynamometer UDM-50. To measure and calculate the cutting temperature, a thermoelectric method based on the formation of practically not inertial microthermocouples during cutting was used. The temperature to which the CBN cutting wheel on a metal base is heated is a limiting factor in processing, since when heated to a temperature of 600ºС, the strength of the wheel decreases by half, which can cause its rupture under the action of centrifugal forces, as well as loss of stability and jamming during cutting. In the present study, the wheel temperature was measured after one minute of continuous operation. The values of the component of the cutting force PY, depending on the processing modes, can reach values of the order of 70 N. The values of the component of the cutting force PZ, depending on the processing modes, can reach values of 45 N. The cutting power can be 2800W. The temperature resistance of the wheel (heating time of the wheel up to 600ºС) when cutting dry is maximum 28 minutes, when grinding with cooling of the cutting zone with negative temperature air from a Ranque-Hilsch tube, the temperature resistance is 35 minutes, with ejector cooling of sprayed coolant 37 minutes and with jet-pressure cooling it is 40 minutes. The maximum cutting length is respectively 0.7: 0.8; 0.9 and 2m. The cutting power is 600...2800W.


Author(s):  
Khirod Mahapatro ◽  
P Vamsi Krishna

Dual nozzle vortex tube cooling system (VTCS) is developed to improve the machinability of Ti-6Al-4V where cold-compressed CO2 gas is used as a coolant. The cooling effect is produced by the process of energy separation in the vortex tube and the coolant is supplied into the machining zone to remove the generated heat in machining. In this study, the responses such as cutting force (Fz), cutting temperature (Tm), and surface roughness (Ra) are analyzed by considering coolant inlet pressure, cold fraction, and nozzle diameter as input variables. Further optimization is performed for the input variables using the genetic algorithm technique, and the results at optimum conditions are compared with those of dry cutting. From the results, lower cutting force is observed at lower coolant pressure and cold fraction and higher nozzle diameter. The cutting temperature is minimized by increasing coolant pressure and cold fraction and by decreasing nozzle diameter. A better surface finish is observed at high coolant pressure and cold fraction and lower nozzle diameters. It is observed from the response surface method (RSM) that the coolant pressure is most significantly affecting all the responses. At optimum conditions, the cutting temperature and surface roughness are 35.6% and 66.14%, respectively, lower than dry cutting due to the effective cooling and lubricating action of the CO2 gas, whereas cutting force observed under the VTCS is 18.6% higher than that of dry cutting because of the impulse force of the coolant VTCS and thermal softening of the workpiece in dry cutting.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7876
Author(s):  
Alliche Mohamed-Amine ◽  
Djennane Mohamed ◽  
Djebara Abdelhakim ◽  
Songmene Victor

Factor relationships in a machining system do not work in pairs. Varying the cutting parameters, materials machined, or volumes produced will influence many machining characteristics. For this reason, we are attempting to better understand the effect of the Johnson-Cook (J-C) law of behavior on cutting temperature prediction. Thus, the objective of the present study is to investigate, experimentally and theoretically, the tool/material interactions and their effects on dust emission during orthogonal cutting. The proposed approach is built on three steps. First, we established an experimental design to analyze, experimentally, the cutting conditions effects on the cutting temperature under dry condition. The empirical model which is based on the response surface methodology was used to generate a large amount of data depending on the machining conditions. Through this step, we were able to analyze the sensitivity of the cutting temperature to different cutting parameters. It was found that cutting speed, tool tip radius, rake angle, and the interaction between the cutting speed and the rake angle explain more than 84.66% of the cutting temperature variation. The cutting temperature will be considered as a reference to validate the analytical model. Hence, a temperature prediction model is important as a second step. The modeling of orthogonal machining using the J-C plasticity model showed a good correlation between the predicted cutting temperature and that obtained by the proposed empirical model. The calculated deviations for the different cutting conditions tested are relatively acceptable (with a less than 10% error). Finally, the established analytical model was then applied to the machining processes in order to optimize the cutting parameters and, at the same time, minimize the generated dust. The evaluation of the dust generation revealed that the dust emission is closely related to the variation of the cutting temperature. We also noticed that the dust generation can indicate different phenomena of fine and ultrafine particles generation during the cutting process, related to the heat source or temperature during orthogonal machining. Finally, the effective strategy to limit dust emissions at the source is to avoid the critical temperature zone. For this purpose, the two-sided values can be seen as combinations to limit dust emissions at the source.


2021 ◽  
Vol 5 (3 (Under Construction)) ◽  
pp. 398-404
Author(s):  
Mercy OZAKPOLOR ◽  
Cyril ALİYEGBENOMA ◽  
Dıckson Davıd OLODU

Sign in / Sign up

Export Citation Format

Share Document