The mellin integral transform in fractional calculus

Author(s):  
Yuri Luchko ◽  
Virginia Kiryakova

AbstractIn Fractional Calculus (FC), the Laplace and the Fourier integral transforms are traditionally employed for solving different problems. In this paper, we demonstrate the role of the Mellin integral transform in FC. We note that the Laplace integral transform, the sin- and cos-Fourier transforms, and the FC operators can all be represented as Mellin convolution type integral transforms. Moreover, the special functions of FC are all particular cases of the Fox H-function that is defined as an inverse Mellin transform of a quotient of some products of the Gamma functions.In this paper, several known and some new applications of the Mellin integral transform to different problems in FC are exemplarily presented. The Mellin integral transform is employed to derive the inversion formulas for the FC operators and to evaluate some FC related integrals and in particular, the Laplace transforms and the sin- and cos-Fourier transforms of some special functions of FC. We show how to use the Mellin integral transform to prove the Post-Widder formula (and to obtain its new modi-fication), to derive some new Leibniz type rules for the FC operators, and to get new completely monotone functions from the known ones.

Author(s):  
Virginia Kiryakova

AbstractIn 1966 Ivan Dimovski introduced and started detailed studies on the Bessel type differential operators B of arbitrary (integer) order m ≥ 1. He also suggested a variant of the Obrechkoff integral transform (arising in a paper of 1958 by another Bulgarian mathematician Nikola Obrechkoff) as a Laplace-type transform basis of a corresponding operational calculus for B and for its linear right inverse integral operator L. Later, the developments on these linear singular differential operators appearing in many problems of mathematical physics, have been continued by the author of this survey who called them hyper-Bessel differential operators, in relation to the notion of hyper-Bessel functions of Delerue (1953), shown to form a fundamental system of solutions of the IVPs for By(t) = λy(t). We have been able to extend Dimovski’s results on the hyper-Bessel operators and on the Obrechkoff transform due to the happy hint to attract the tools of the special functions as Meijer’s G-function and Fox’s H-function to handle successfully these matters. These author’s studies have lead to the introduction and development of a theory of generalized fractional calculus (GFC) in her monograph (1994) and subsequent papers, and to various applications of this GFC in other topics of analysis, differential equations, special functions and integral transforms.Here we try briefly to expose the ideas leading to this GFC, its basic facts and some of the mentioned applications.


2017 ◽  
Vol 37 (3) ◽  
pp. 113-118 ◽  
Author(s):  
Shilpi Jain ◽  
Praveen Agarwal

In the present paper author derive a number of integrals concerning various special functions which are applications of the one of Osler result. Osler provided extensions to the familiar Leibniz rule for the nth derivative of product of two functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

A remarkably large number of integral transforms and fractional integral formulas involving various special functions have been investigated by many authors. Very recently, Agarwal gave some integral transforms and fractional integral formulas involving theFp(α,β)(·). In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functionsFp(α,β,m)(·). Some interesting special cases of our main results are also considered.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manish Kumar Bansal ◽  
Devendra Kumar

Abstract Recently, Srivastava, Saxena and Parmar [H. M. Srivastava, R. K. Saxena and R. K. Parmar, Some families of the incomplete H-functions and the incomplete H ¯ {\overline{H}} -functions and associated integral transforms and operators of fractional calculus with applications, Russ. J. Math. Phys. 25 2018, 1, 116–138] suggested incomplete H-functions (IHF) that paved the way to a natural extension and decomposition of H-function and other connected functions as well as to some important closed-form portrayals of definite and improper integrals of different kinds of special functions of physical sciences. In this article, our key aim is to present some new integral transform (Jacobi transform, Gegenbauer transform, Legendre transform and 𝖯 δ {\mathsf{P}_{\delta}} -transform) of this family of incomplete H-functions. Further, we give several interesting new and known results which are special cases our key results.


Filomat ◽  
2017 ◽  
Vol 31 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Rekha Srivastava ◽  
Ritu Agarwal ◽  
Sonal Jain

Recently, Srivastava et al. [Integral Transforms Spec. Funct. 23 (2012), 659-683] introduced the incomplete Pochhammer symbols that led to a natural generalization and decomposition of a class of hypergeometric and other related functions as well as to certain potentially useful closed-form representations of definite and improper integrals of various special functions of applied mathematics and mathematical physics. In the present paper, our aim is to establish several formulas involving integral transforms and fractional derivatives of this family of incomplete hypergeometric functions. As corollaries and consequences, many interesting results are shown to follow from our main results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yang Zhao ◽  
Dumitru Baleanu ◽  
Mihaela Cristina Baleanu ◽  
De-Fu Cheng ◽  
Xiao-Jun Yang

The mappings for some special functions on Cantor sets are investigated. Meanwhile, we apply the local fractional Fourier series, Fourier transforms, and Laplace transforms to solve three local fractional differential equations, and the corresponding nondifferentiable solutions were presented.


2020 ◽  
Vol 12 (2) ◽  
pp. 29-34
Author(s):  
M.D. Sharma ◽  
S. Nain

This study discusses the use of numerical integration in evaluating the improper integrals appearing as inverse integral transforms of non-analytic functions. These transforms appear while studying the response of various sources in an elastic medium through integral transform method. In these studies, the inverse Fourier transforms are solved numerically without bothering about the singularities and branch points in the corresponding integrands. References on numerical integration cited in relevant papers do not support such an evaluation but suggest contrary. Approximation of inverse Laplace transform integral into a series is used without following the essential restrictions and assumptions. Volume of the published papers using these dubious procedures has reached to an alarming level. The discussion presented aims to draw the attention of researchers as well as journals so as to stop this menace at the earliest possible.Keywords: Inverse Fourier transforms, inverse Laplace transforms, Romberg integration, improper integral, elastic waves


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Josue Labaki ◽  
Edivaldo Romanini ◽  
Euclides Mesquita

In part I of the present article the formulation for a dynamic stationary semianalytical solution for a spatially constant load applied over a rectangular surface within a viscoelastic isotropic full-space has been presented. The solution is obtained within the frame of a double Fourier integral transform. These inverse integral transforms must be evaluated numerically. In the present paper, the technique to evaluate numerically the inverse double Fourier integrals is described. The procedure is validated, and a number of original displacement results for the stationary loading case are reported.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
E. Romanini ◽  
J. Labaki ◽  
E. Mesquita ◽  
R. C. Silva

This paper presents stress influence functions for uniformly distributed, time-harmonic rectangular loads within a three-dimensional, viscoelastic, isotropic full-space. The coupled differential equations relating displacements and stresses in the full-space are solved through double Fourier integral transforms in the wave number domain, in which they can be solved algebraically. The final stress fields are expressed in terms of double indefinite integrals arising from the Fourier transforms. The paper presents numerical schemes with which to integrate these functions accurately. The article presents numerical validation of the synthesized stress kernels and their behavior for high frequencies and large distances from the excitation source. The influence of damping ratio on the dynamic results is also investigated. This article is complementary to previous results of the authors in which the corresponding displacement solutions were derived. Stress influence functions, together with their displacement counterparts, are a fundamental part of many numerical methods of discretization such the boundary element method.


Author(s):  
Juan Manuel Velazquez Arcos ◽  
Ricardo Teodoro Paez Hernandez ◽  
Alejandro Perez Ricardez ◽  
Jaime Granados Samaniego ◽  
Alicia Cid Reborido

We devote the current chapter to describe a class of integral operators with properties equivalent to a killer operator of the quantum mechanics theory acting over a determined state, literally killing the state but now operating over some kind of Fourier integral transforms that satisfies a certain Fredholm integral equation, we call this operators Zap Integral Operators (ZIO). The result of this action is to eliminate the inhomogeneous term and recover a homogeneous integral equation. We show that thanks to this class of operators we can explain the presence of two extremely different solutions of the same Generalized Inhomogeneous Fredholm equation. So we can regard the Generalized Inhomogeneous Fredholm Equation as a Super-Equation with two kinds of solutions, the resonant and the conventional but coexisting simultaneously. Also, we remember the generalized projection operators and we show they are the precursors of the ZIO. We present simultaneous academic examples for both kinds of solutions.


Sign in / Sign up

Export Citation Format

Share Document