improper integral
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 2012 (1) ◽  
pp. 012069
Author(s):  
Yuefeng Pan ◽  
Menghan Shi ◽  
Tianle Shen
Keyword(s):  

2020 ◽  
Vol 7 (4) ◽  
pp. 577-586
Author(s):  
Samad Noeiaghdam ◽  
Mohammad Ali Fariborzi Araghi

Finding the optimal iteration of Gaussian quadrature rule is one of the important problems in the computational methods. In this study, we apply the CESTAC (Controle et Estimation Stochastique des Arrondis de Calculs) method and the CADNA (Control of Accuracy and Debugging for Numerical Applications) library to find the optimal iteration and optimal approximation of the Gauss-Legendre integration rule (G-LIR). A theorem is proved to show the validation of the presented method based on the concept of the common significant digits. Applying this method, an improper integral in the solution of the model of the osmosis system is evaluated and the optimal results are obtained. Moreover, the accuracy of method is demonstrated by evaluating other definite integrals. The results of examples illustrate the importance of using the stochastic arithmetic in discrete case in comparison with the common computer arithmetic.


2020 ◽  
Vol 27 (4) ◽  
pp. 517-527 ◽  
Author(s):  
Ümit Totur ◽  
İbrahim Çanak

AbstractFor a locally integrable function f on {[0,\infty)}, we defineF(t)=\int_{0}^{t}f(u)\mathop{}\!du\quad\text{and}\quad\sigma_{\alpha}(t)=\int_% {0}^{t}\biggl{(}1-\frac{u}{t}\biggr{)}^{\alpha}f(u)\mathop{}\!dufor {t>0}. The improper integral {\int_{0}^{\infty}f(u)\mathop{}\!du} is said to be {(C,\alpha)} integrable to L for some {\alpha>-1} if the limit {\lim_{x\to\infty}\sigma_{\alpha}(t)=L} exists. It is known that {\lim_{t\to\infty}F(t)=\ell} implies {\lim_{t\to\infty}\sigma_{\alpha}(t)=\ell} for {\alpha>-1}, but the converse of this implication is not true in general. In this paper, we introduce the concept of the general control modulo of non-integer order for functions and obtain some Tauberian conditions in terms of this concept for the {(C,\alpha)} integrability method in order that the converse implication hold true. Our results extend the main theorems in [Ü. Totur and İ. Çanak, Tauberian conditions for the (C,\alpha) integrability of functions, Positivity 21 2017, 1, 73–83].


Author(s):  
Pablo Enrique Aballe Vazquez

Formulation of the classic Taylor series as an orthogonal concept based on identifying the expansions coefficients as differential transformation applied to a unique function; definition of operational orthogonality by analogy with the Hilbert space and identification of the nth derivative at a point based on the improper integral on the positive semiaxis ; deduction of inversion integrals for Laplace transforms for analytical functions


Author(s):  
Pablo Enrique Aballe Vazquez

Formulation of the classic Taylor series as an orthogonal concept based on identifying the expansions coefficients as differential transformation applied to a unique function; definition of operational orthogonality by analogy with the Hilbert space and identification of the nth derivative at a point based on the improper integral on the positive semiaxis ; deduction of inversion integrals for Laplacen transforms for analytical functions.


2020 ◽  
Vol 12 (2) ◽  
pp. 29-34
Author(s):  
M.D. Sharma ◽  
S. Nain

This study discusses the use of numerical integration in evaluating the improper integrals appearing as inverse integral transforms of non-analytic functions. These transforms appear while studying the response of various sources in an elastic medium through integral transform method. In these studies, the inverse Fourier transforms are solved numerically without bothering about the singularities and branch points in the corresponding integrands. References on numerical integration cited in relevant papers do not support such an evaluation but suggest contrary. Approximation of inverse Laplace transform integral into a series is used without following the essential restrictions and assumptions. Volume of the published papers using these dubious procedures has reached to an alarming level. The discussion presented aims to draw the attention of researchers as well as journals so as to stop this menace at the earliest possible.Keywords: Inverse Fourier transforms, inverse Laplace transforms, Romberg integration, improper integral, elastic waves


Author(s):  
Angie Damian Mojica

The study of the understanding of mathematical concepts is of great interest for research in Mathematics Education. In this sense, an investigation is carried out on the understanding of the concept of improper integral, a basic concept from the first courses of Bachelor of Mathematics for subsequent courses. The objective is to characterize the understanding of this mathematical concept through a proficiency model for this purpose, an instrument was designed that was applied to second-year university students. The research is qualitative exploratory and is based on the framework of the Theory of records of semiotic representations.    


2020 ◽  
Vol 17 (2) ◽  
pp. 235-246
Author(s):  
Dragan Filipovic ◽  
Tatijana Dlabac

In this paper Green?s function for the semi-infinite strip (which is the two-dimensional Green?s function for a groove of infinite depth and length) is determined in the form of an improper integral, as opposed to the standard summation form. The integral itself, although rather complex, is found in a closed form. By using the derived Green?s function simple formulas are obtained for a single and two-wire line configurations inside the groove.


2019 ◽  
Author(s):  
Siamak Tafazoli ◽  
Farhad Aghili

This paper presents an analytical closed-form solution to improper integral $\mu(r)=\int_0^{\infty} x^r dx$, where $r \geq 0$. The solution technique is based on splitting the improper integral into an infinite sum of definite integrals with successive integer limits. The exact solution of every definite integral is obtained by making use of the binomial polynomial expansion, which then allows expression of the entire summation equivalently in terms of a weighted sum of Riemann zeta functions. It turns out that the solution fundamentally depends on whether or not $r$ is an integer. If $r$ is a non-negative integer, then the solution is manifested in a finite series of weighted Bernoulli numbers, which is then drastically simplified to a second order rational function $\mu(r)=(-1)^{r+1}/(r+1)(r+2)$. This is achieved by taking advantage of the relationships between Bernoulli numbers and binomial coefficients. On the other hand, if $r$ is a non-integer real-valued number, then we prove $\mu(r)=0$ by the virtue of the elegant relationships between zeta and gamma functions and their properties.


Sign in / Sign up

Export Citation Format

Share Document