generalized fractional calculus
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2140
Author(s):  
Giacomo Ascione ◽  
Enrica Pirozzi

This paper focuses on the construction of deterministic and stochastic extensions of the Gompertz curve by means of generalized fractional derivatives induced by complete Bernstein functions. Precisely, we first introduce a class of linear stochastic equations involving a generalized fractional integral and we study the properties of its solutions. This is done by proving the existence and uniqueness of Gaussian solutions of such equations via a fixed point argument and then by showing that, under suitable conditions, the expected value of the solution solves a generalized fractional linear equation. Regularity of the absolute p-moment functions is proved by using generalized Grönwall inequalities. Deterministic generalized fractional Gompertz curves are introduced by means of Caputo-type generalized fractional derivatives, possibly with respect to other functions. Their stochastic counterparts are then constructed by using the previously considered integral equations to define a rate process and a generalization of lognormal distributions to ensure that the median of the newly constructed process coincides with the deterministic curve.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2260 ◽  
Author(s):  
Virginia Kiryakova

Evaluation of images of special functions under operators of fractional calculus has become a hot topic with hundreds of recently published papers. These are growing daily and we are able to comment here only on a few of them, including also some of the latest of 2019–2020, just for the purpose of illustrating our unified approach. Many authors are producing a flood of results for various operators of fractional order integration and differentiation and their generalizations of different special (and elementary) functions. This effect is natural because there are great varieties of special functions, respectively, of operators of (classical and generalized) fractional calculus, and thus, their combinations amount to a large number. As examples, we mentioned only two such operators from thousands of results found by a Google search. Most of the mentioned works use the same formal and standard procedures. Furthermore, in such results, often the originals and the images are special functions of different kinds, or the images are not recognized as known special functions, and thus are not easy to use. In this survey we present a unified approach to fulfill the mentioned task at once in a general setting and in a well visible form: for the operators of generalized fractional calculus (including also the classical operators of fractional calculus); and for all generalized hypergeometric functions such as pΨq and pFq, Fox H- and Meijer G-functions, thus incorporating wide classes of special functions. In this way, a great part of the results in the mentioned publications are well predicted and appear as very special cases of ours. The proposed general scheme is based on a few basic classical results (from the Bateman Project and works by Askey, Lavoie–Osler–Tremblay, etc.) combined with ideas and developments from more than 30 years of author’s research, and reflected in the cited recent works. The main idea is as follows: From one side, the operators considered by other authors are cases of generalized fractional calculus and so, are shown to be (m-times) compositions of weighted Riemann–Lioville, i.e., Erdélyi–Kober operators. On the other side, from each generalized hypergeometric function pΨq or pFq (p≤q or p=q+1) we can reach, from the final number of applications of such operators, one of the simplest cases where the classical results are known, for example: to 0Fq−p (hyper-Bessel functions, in particular trigonometric functions of order (q−p)), 0F0 (exponential function), or 1F0 (beta-distribution of form (1−z)αzβ). The final result, written explicitly, is that any GFC operator (of multiplicity m≥1) transforms a generalized hypergeometric function into the same kind of special function with indices p and q increased by m.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2103
Author(s):  
Giacomo Ascione

Fractional-order epidemic models have become widely studied in the literature. Here, we consider the generalization of a simple SIR model in the context of generalized fractional calculus and we study the main features of such model. Moreover, we construct semi-Markov stochastic epidemic models by using time changed continuous time Markov chains, where the parent process is the stochastic analog of a simple SIR epidemic. In particular, we show that, differently from what happens in the classic case, the deterministic model does not coincide with the large population limit of the stochastic one. This loss of fluid limit is then stressed in terms of numerical examples.


Author(s):  
Emil Nikolov

In this work, are proposed, researched and analyzed structure, methods and algorithms for designing of fractional DRC-systems with ML-Clegg-differentiators. For their development, inverse solutions of the synthesis problem were used with the help of rational fractional ML-Clegg-operators from the theory of generalized fractional calculus. Their potentials advantages are proven. Results of perturbation and robust analysis for numerical example are presented.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
D.L. Suthar

The aim of this paper is to study some properties of K-function introduced by Sharma. Here we establish two theorems which give the image of this K-function under the generalized fractional integral operators involving Fox’s H-function as kernel. Corresponding assertions in term of Euler, Whittaker and K-transforms are also presented. On account of general nature of H-function and K-function a number of results involving special functions can be obtained merely by giving particular values for the parameters.


Sign in / Sign up

Export Citation Format

Share Document