scholarly journals Calculation of interval damping ratio under uncertain load in power system

2012 ◽  
Vol 60 (1) ◽  
pp. 151-158
Author(s):  
J. Xing ◽  
C. Chen ◽  
P. Wu

Calculation of interval damping ratio under uncertain load in power system The problem of small-signal stability considering load uncertainty in power system is investigated. Firstly, this paper shows attempts to create a nonlinear optimization model for solving the upper and lower limits of the oscillation mode's damping ratio under an interval load. Then, the effective successive linear programming (SLP) method is proposed to solve this problem. By using this method, the interval damping ratio and corresponding load states at its interval limits are obtained. Calculation results can be used to evaluate the influence of load variation on a certain mode and give useful information for improvement. Finally, the proposed method is validated on two test systems.

Author(s):  
Shalom Lim Zhu Aun ◽  
Marayati Bte Marsadek ◽  
Agileswari K. Ramasamy

This paper primarily focuses on the small signal stability analysis of a power system integrated with solar photovoltaics (PV). The test system used in this study is the IEEE 39-bus. The small signal stability of the test system are investigated in terms of eigenvalue analysis, damped frequency, damping ratio and participation factor. In this study, various conditions are analyzed which include the increase in solar PV penetration into the system and load variation. The results obtained indicate that there is no significant impact of solar PV penetration on the small signal stability of large scaled power system.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3440 ◽  
Author(s):  
Edgar Lucas ◽  
David Campos-Gaona ◽  
Olimpo Anaya-Lara

Synthetic inertia provision through the control of doubly-fed induction generator (DFIG) wind turbines is an effective means of providing frequency support to the wider electrical network. There are numerous control topologies to achieve this, many of which work by making modifications to the DFIG power controller and introducing additional loops to relate active power to electrical frequency. How these many controller designs compare to one-another in terms of their contribution to frequency response is a much studied topic, but perhaps less studied is their effect on the small-signal stability of the system. The concept of small-signal stability in the context of a power system is the ability to maintain synchronism when subjected to small disturbances, such as those associated with a change in load or a loss of generation. Amendments made to the control system of a large-scale wind farm will inevitably have an effect on the system as a whole, and by making a DFIG wind turbine behave more like a synchronous generator, which synthetic inertia provision does, may incur consequences relating to electromechanical oscillations between generating units. This work compares the implications of two prominent synthetic inertia controllers of varying complexity and their effect on small-signal stability. Eigenvalue analysis is conducted to highlight the key information relating to electromechanical modes between generators for the two control strategies, with a focus on how these affect the damping ratios. It is shown that as the synthetic inertia controller becomes both more complex and more effective, the damping ratio of the electromechanical modes is reduced, signifying a decreased system stability.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012011
Author(s):  
Yinsheng Su ◽  
Mengxuan Guo ◽  
Haicheng Yao ◽  
Lin Guan ◽  
Jiyu Huang ◽  
...  

Abstract Small-signal stability (SSA) is important to power system security. A data-driven approach is established for rapid prediction of the power system oscillation characteristics. The key of the approach is the Graph Convolution Networks (GCN) with residual mechanism, which works to aggregate features from high-dimension steady-state operation information and is denoted as ResGCN (RESidual GCN) in the paper. The residual mechanism helps to overcome the network degradation phenomenon. Both the oscillation frequency and damping ratio of multiple modes can be predicted by the proposed model. The performance of the proposed scheme as well as its adaptability to the power system topological changes is verified on the IEEE 39 Bus system.


2009 ◽  
Vol 129 (11) ◽  
pp. 1290-1298
Author(s):  
Hiroyuki Ishikawa ◽  
Yasuyuki Shirai ◽  
Tanzo Nitta ◽  
Katsuhiko Shibata

Sign in / Sign up

Export Citation Format

Share Document