scholarly journals Assessing the Impact of DFIG Synthetic Inertia Provision on Power System Small-Signal Stability

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3440 ◽  
Author(s):  
Edgar Lucas ◽  
David Campos-Gaona ◽  
Olimpo Anaya-Lara

Synthetic inertia provision through the control of doubly-fed induction generator (DFIG) wind turbines is an effective means of providing frequency support to the wider electrical network. There are numerous control topologies to achieve this, many of which work by making modifications to the DFIG power controller and introducing additional loops to relate active power to electrical frequency. How these many controller designs compare to one-another in terms of their contribution to frequency response is a much studied topic, but perhaps less studied is their effect on the small-signal stability of the system. The concept of small-signal stability in the context of a power system is the ability to maintain synchronism when subjected to small disturbances, such as those associated with a change in load or a loss of generation. Amendments made to the control system of a large-scale wind farm will inevitably have an effect on the system as a whole, and by making a DFIG wind turbine behave more like a synchronous generator, which synthetic inertia provision does, may incur consequences relating to electromechanical oscillations between generating units. This work compares the implications of two prominent synthetic inertia controllers of varying complexity and their effect on small-signal stability. Eigenvalue analysis is conducted to highlight the key information relating to electromechanical modes between generators for the two control strategies, with a focus on how these affect the damping ratios. It is shown that as the synthetic inertia controller becomes both more complex and more effective, the damping ratio of the electromechanical modes is reduced, signifying a decreased system stability.

2013 ◽  
Vol 805-806 ◽  
pp. 393-396
Author(s):  
Zhen Yu Xu ◽  
Zhen Qiao ◽  
Qian He ◽  
Xu Zhang ◽  
Jing Qi Su

With the penetration of wind energy is becoming higher and higher in power grid, it is very important to investigate the impact of wind generations on small signal stability. In this paper, a complete small signal model of wind turbine with direct-drive permanent magnet generator is built to study the impact of large-scale wind farms on the small signal stability of power system. By means of simulation and eigenvalue analysis, an actual power system is investigated, and the damping characteristic of power grid under different wind power penetration is discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 157
Author(s):  
Jiawei Yu ◽  
Ziqian Yang ◽  
Jurgen Kurths ◽  
Meng Zhan

Traditional power systems have been gradually shifting to power-electronic-based ones, with more power electronic devices (including converters) incorporated recently. Faced with much more complicated dynamics, it is a great challenge to uncover its physical mechanisms for system stability and/or instability (oscillation). In this paper, we first establish a nonlinear model of a multi-converter power system within the DC-link voltage timescale, from the first principle. Then, we obtain a linearized model with the associated characteristic matrix, whose eigenvalues determine the system stability, and finally get independent subsystems by using symmetry approximation conditions under the assumptions that all converters’ parameters and their susceptance to the infinite bus (Bg) are identical. Based on these mathematical analyses, we find that the whole system can be decomposed into several equivalent single-converter systems and its small-signal stability is solely determined by a simple converter system connected to an infinite bus under the same susceptance Bg. These results of large-scale multi-converter analysis help to understand the power-electronic-based power system dynamics, such as renewable energy integration. As well, they are expected to stimulate broad interests among researchers in the fields of network dynamics theory and applications.


2013 ◽  
Vol 860-863 ◽  
pp. 309-313
Author(s):  
Xiao Yan Bian ◽  
Li Ning Yang ◽  
Xin Xin Huang ◽  
Yang Fu

Large scale wind farm output variation always deteriorates the system stability. To study this problem, this paper builds the model of power system with the integration of large-scale wind farm based on BPA. The simulation results show that large oscillations of voltage and rotor angle of system will happen, when three-phase short circuit fault occurs on the main line for transmitting wind power. With wind farm output decreasing, the transient stability and small-signal stability of power system will be improved.


2012 ◽  
Vol 60 (1) ◽  
pp. 151-158
Author(s):  
J. Xing ◽  
C. Chen ◽  
P. Wu

Calculation of interval damping ratio under uncertain load in power system The problem of small-signal stability considering load uncertainty in power system is investigated. Firstly, this paper shows attempts to create a nonlinear optimization model for solving the upper and lower limits of the oscillation mode's damping ratio under an interval load. Then, the effective successive linear programming (SLP) method is proposed to solve this problem. By using this method, the interval damping ratio and corresponding load states at its interval limits are obtained. Calculation results can be used to evaluate the influence of load variation on a certain mode and give useful information for improvement. Finally, the proposed method is validated on two test systems.


Author(s):  
SAMUNDRA GURUNG ◽  
SUMATE NAETILADDANON ◽  
ANAWACH SANGSWANG

Currently, large-scale solar farms are being rapidly integrated in electrical grids all over the world. However, the photovoltaic (PV) output power is highly intermittent in nature and can also be correlated with other solar farms located at different places. Moreover, the increasing PV penetration also results in large solar forecast error and its impact on power system stability should be estimated. The effects of these quantities on small-signal stability are difficult to quantify using deterministic techniques but can be conveniently estimated using probabilistic methods. For this purpose, the authors have developed a method of probabilistic analysis based on combined cumulant and Gram– Charlier expansion technique. The output from the proposed method provides the probability density function and cumulative density function of the real part of the critical eigenvalue, from which information concerning the stability of low-frequency oscillatory dynamics can be inferred. The proposed method gives accurate results in less computation time compared to conventional techniques. The test system is a large modified IEEE 16-machine, 68-bus system, which is a benchmark system to study low-frequency oscillatory dynamics in power systems. The results show that the PV power fluctuation has the potential to cause oscillatory instability. Furthermore, the system is more prone to small-signal instability when the PV farms are correlated as well as when large PV forecast error exists.


2013 ◽  
Vol 441 ◽  
pp. 258-262
Author(s):  
Lin Lin Yu ◽  
Yu Fei Rao ◽  
Shi Qian Wang

With the rapid growth in the size of Henan grid, in the context of UHV networking, Henan power grid operation is facing a more complex mechanism and operating characteristics. Risks affecting the security and stability will be more subtle. There are more and more problems in frequency oscillation. The power system has much more generators and dimension after interconnection. Small signal stability analyzing eigenvalue complex and longer, which greatly reduces the work efficiency. This paper which based on Henan power system stability diagnostic platform developed technology based on multi-band parallel algorithm for small signal stability analysis. The analysis of the small signal stability eigenvalue calculation is assigned to a different platform computing nodes simultaneously. Then this method is applied to Henan grid in the year of 2012. The results show that the small signal stability algorithm which based on the multi-band can ensure the correctness of calculations. Simultaneously, calculation time is greatly reduced and the work efficiency is improved. The practice has a strong role in the promotion.


Author(s):  
Shalom Lim Zhu Aun ◽  
Marayati Bte Marsadek ◽  
Agileswari K. Ramasamy

This paper primarily focuses on the small signal stability analysis of a power system integrated with solar photovoltaics (PV). The test system used in this study is the IEEE 39-bus. The small signal stability of the test system are investigated in terms of eigenvalue analysis, damped frequency, damping ratio and participation factor. In this study, various conditions are analyzed which include the increase in solar PV penetration into the system and load variation. The results obtained indicate that there is no significant impact of solar PV penetration on the small signal stability of large scaled power system.


2013 ◽  
Vol 732-733 ◽  
pp. 848-851
Author(s):  
Chao Chun Li ◽  
Pei Hwa Huang

Power system small signal stability concerns the ability of the power system to maintain stability subject to small disturbances. The analysis of small signal stability often has to deal with high-order system matrix due to the large number of generating units so that it is not easy to calculate and analyze the original system matrix and the whole set of eigenvalues. In this paper a new approach is proposed to take advantage of the specific feature of the parallel structure of artificial neural network for calculating the most critical eigenvalue or all eigenvalues of the unstable oscillation mode. The developed algorithm is tested on a sample power system to validate the feasibility of the proposed method for the calculation of the critical eigenvalue.


Sign in / Sign up

Export Citation Format

Share Document