A comparative study of thermodynamic electrolyte models applied to the Solvay soda system

2011 ◽  
Vol 32 (2) ◽  
pp. 135-154 ◽  
Author(s):  
Zdzisław Jaworski ◽  
Małgorzata Czernuszewicz ◽  
Łukasz Gralla

A comparative study of thermodynamic electrolyte models applied to the Solvay soda system Fast development of computation techniques for electrolyte activities contributed recently to introduction of a few substantial programmes for thermodynamic computing of multiphase systems. The presented study comprises useful information for practical computing using selected thermodynamic models of aqueous electrolyte solutions. Those models enable quantitative description of both phase and ionic equilibria and provide values of activity coefficients. The carried out analysis of individual models involved a comparison of their practical effectiveness features along with problems encountered in evaluation of the coefficients. The authors conclude that for the Solvay soda system the exUNIQUAC model for an in-house code or the MSE model for a commercial one can be used.

1976 ◽  
Vol 54 (1) ◽  
pp. 9-11 ◽  
Author(s):  
Chai-Fu Pan

In non-associated dilute aqueous electrolyte solutions, the deviation from ideality is principally attributed to the interionic interactions and hydration of ions. Stokes and Robinson combined Bjerrum's thermodynamic treatment of ion–solvent interactions with Debye–Hückel treatment of interionic interactions to obtain a two-parameter equation. In very dilute regions, the Stokes and Robinson's equation reduces to a much simpler form, i.e.[Formula: see text]Activity coefficients of an electrolyte at lower concentrations, say up to 0.1 m, can be calculated from the equation provided suitable values of &([a-z]+); and h are available. Solutions of hydrogen chloride and sodium chloride were chosen as examples. The results agree with the existing data very satisfactorily.


Sign in / Sign up

Export Citation Format

Share Document