Botulinum toxin type A-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder

2012 ◽  
Vol 15 (2) ◽  
pp. 345-353 ◽  
Author(s):  
A. Bossowska ◽  
M. Majewski

Botulinum toxin type A-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder Botulinum toxin type A (BTX) is a potent neurotoxin, which in recent years has been effectively applied in experimental treatments of many neurogenic disorders of the urinary bladder. BTX is a selective, presynaptically-acting blocking agent of acetylcholine release from nerve terminals what, in turn, leads to the cessation of somatic motor and/or parasympathetic transmission. However, application of this toxin in urological practice is still in the developmental stages and the full mechanism of its action remain elusive. Thus, the present study was aimed at investigating the neurochemical characterization of dorsal root ganglion (DRG) neurons supplying the porcine urinary bladder after BTX treatment. Retrograde tracer Fast Blue (FB) was injected into the urinary bladder wall in six juvenile female pigs and three weeks later, intramural bladder injections of BTX (100 IU per animal) were carried out in all the animals. After a week, DRG from L1 to Cq1 were harvested from the pigs and neurochemical characterization of FB+ neurons was performed using double-labeling immunofluorescence technique on 10-μm-thick cryostat sections. BTX injections led to a significant decrease in the number of FB+ neurons containing substance P (SP), calcitonin gene-related peptide (CGRP), calbindin (CB), somatostatin (SOM) and neuronal nitric oxide synthase (nNOS) when compared with that found in the healthy animals (19% vs. 45%, 18% vs. 36%, 0.6% vs. 3%, 0.4 vs. 4% and 0.1% vs. 6%, respectively) These data demonstrated that BTX changed the chemical coding of bladder sensory neurons, and therefore this drug should be taken into consideration when it planning experimental therapy of selected neurogenic bladder disorders.

Toxins ◽  
2015 ◽  
Vol 7 (11) ◽  
pp. 4797-4816 ◽  
Author(s):  
Agnieszka Bossowska ◽  
Ewa Lepiarczyk ◽  
Urszula Mazur ◽  
Paweł Janikiewicz ◽  
Włodzimierz Markiewicz

2012 ◽  
Vol 15 (1) ◽  
pp. 101-109 ◽  
Author(s):  
A. Bossowska ◽  
M. Majewski

Conantokin G-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder Conantokin G (CTG), isolated from the venom of the marine cone snail Conus geographus, is an antagonist of N-methyl-d-aspartate receptors (NMDARs), the activation of which, especially those located on the central afferent terminals and dorsal horn neurons, leads to hypersensitivity and pain. Thus, CTG blocking of NMDARs, has an antinociceptive effect, particularly in the case of neurogenic pain treatment. As many urinary bladder disorders are caused by hyperactivity of sensory bladder innervation, it seems useful to estimate the influence of CTG on the plasticity of sensory neurons supplying the organ. Retrograde tracer Fast Blue (FB) was injected into the urinary bladder wall of six juvenile female pigs. Three weeks later, intramural bladder injections of CTG (120 μg per animal) were carried out in all animals. After a week, dorsal root ganglia of interest were harvested from all animals and neurochemical characterization of FB+ neurons was performed using a routine double-immunofluorescence labeling technique on 10-μm-thick cryostat sections. CTG injections led to a significant decrease in the number of FB+ neurons containing substance P (SP), pituitary adenylate cyclase activating polypeptide (PACAP), somatostatin (SOM), calbindin (CB) and nitric oxide synthase (NOS) when compared with healthy animals (20% vs. 45%, 13% vs. 26%, 1.3% vs. 3%, 1.2 vs. 4% and 0.9% vs. 6% respectively) and to an increase in the number of cells immunolabelled for galanin (GAL, 39% vs. 6.5%). These data demonstrated that CTG changed the chemical coding of bladder sensory neurons, thus indicating that CTG could eventually be used in the therapy of selected neurogenic bladder illnesses.


2009 ◽  
Vol 13 (S1) ◽  
Author(s):  
A. Coelho ◽  
P. Dinis ◽  
R. Pinto ◽  
T. Gorgal ◽  
C. Silva ◽  
...  

2006 ◽  
Vol 1119 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Hiroko Matsuyoshi ◽  
Noriyuki Masuda ◽  
Michael B. Chancellor ◽  
Vickie L. Erickson ◽  
Yoshihiko Hirao ◽  
...  

2009 ◽  
Vol 65 (3) ◽  
pp. 245-251 ◽  
Author(s):  
Tokumasa Hayashi ◽  
Teruyoshi Kondo ◽  
Masaru Ishimatsu ◽  
Satoko Yamada ◽  
Kei-ichiro Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document