chemical coding
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 11)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 22 (24) ◽  
pp. 13399
Author(s):  
Paweł Janikiewicz ◽  
Barbara Wasilewska ◽  
Urszula Mazur ◽  
Amelia Franke-Radowiecka ◽  
Mariusz Majewski ◽  
...  

Although guanethidine (GUA) was used in the past as a drug to suppress hyperactivity of the sympathetic nerve fibers, there are no available data concerning the possible action of this substance on the sensory component of the peripheral nervous system supplying the urinary bladder. Thus, the present study was aimed at disclosing the influence of intravesically instilled GUA on the distribution, relative frequency, and chemical coding of dorsal root ganglion neurons associated with the porcine urinary bladder. The investigated sensory neurons were visualized with a retrograde tracing method using Fast Blue (FB), while their chemical profile was disclosed with single-labeling immunohistochemistry using antibodies against substance P (SP), calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP), galanin (GAL), neuronal nitric oxide synthase (nNOS), somatostatin (SOM), and calbindin (CB). After GUA treatment, a slight decrease in the number of FB+ neurons containing SP was observed when compared with untreated animals (34.6 ± 6.5% vs. 45.6 ± 1.3%), while the number of retrogradely traced cells immunolabeled for GAL, nNOS, and CB distinctly increased (12.3 ± 1.0% vs. 7.4 ± 0.6%, 11.9 ± 0.6% vs. 5.4 ± 0.5% and 8.6 ± 0.5% vs. 2.7 ± 0.4%, respectively). However, administration of GUA did not change the number of FB+ neurons containing CGRP, PACAP, or SOM. The present study provides evidence that GUA significantly modifies the sensory innervation of the porcine urinary bladder wall and thus may be considered a potential tool for studying the plasticity of this subdivision of the bladder innervation.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Bartosz Miciński ◽  
Barbara Jana ◽  
Jarosław Całka

Abstract Background The focus of the study was to examine the impact of the inflamed uterus on the population of the paracervical ganglion (PCG) uterus-innervating perikarya and their chemical coding. Fast Blue retrograde tracer was injected into the wall of uterine horns on the 17th day of the first studied estrous cycle. After 28 days, either Escherichia coli suspension or saline was applied to the horns of the uterus, whereas the control group received laparotomy only. Eight days after the above-mentioned procedures, uterine cervices with PCG were collected. Both macroscopic and histopathologic examinations confirmed severe acute endometritis in the Escherichia coli-injected uteri. The double immunofluorescence method was used to analyze changes in the PCG populations coded with dopamine-β‐hydroxylase (DβH) and/or neuropeptide Y (NPY), somatostatin (SOM), vasoactive intestinal polypeptide (VIP) and neuronal isoform of nitric oxide synthase (nNOS). Results The use of Escherichia coli lowered the total number of Fast Blue-positive neurons. Moreover, an increase in DβH+/VIP+, DβH+/NPY+, DβH+/SOM + and DβH+/nNOS + expressing perikarya was noted. A rise in non-noradrenergic VIP-, SOM- and nNOS-immunopositive populations was also recorded, as well as a drop in DβH-positive neurotransmitter-negative neurons. Conclusions To sum up, inflammation of the uterus has an impact on the neurochemical properties of the uterine perikarya in PCG, possibly affecting the functions of the organ.


2021 ◽  
Vol 22 (5) ◽  
pp. 2231
Author(s):  
Żaneta Listowska ◽  
Zenon Pidsudko

The present study investigated the effect of unilateral axotomy of urinary bladder trigone (UBT)-projecting nerve fibers from the right anterior pelvic ganglion (APG) on changes in the chemical coding of their neuronal bodies. The study was performed using male pigs with immunohistochemistry and quantitative real-time PCR (qPCR). The animals were divided into a control (C), a morphological (MG) or a molecular biology group (MBG). APG neurons supplying UBT were revealed using the retrograde tracing technique with Fast Blue (FB). Unilateral axotomy resulted in an over 50% decrease in the number of FB+ neurons in both APG ganglia. Immunohistochemistry revealed significant changes in the chemical coding of FB+ cells only in the right ganglion: decreased expression of dopamine-B-hydroxylase (DBH)/tyrosine hydroxylase (TH) and up-regulation of the vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT), galanin (GAL), vasoactive intestinal polypeptide (VIP) and brain nitric oxide synthase (bNOS). The qPCR results partly corresponded with immunofluorescence findings. In the APGs, genes for VAChT and ChAT, TH and DBH, VIP, and NOS were distinctly down-regulated, while the expression of GAL was up-regulated. Such data may be the basis for further studies concerning the plasticity of these ganglia under experimental or pathological conditions.


Author(s):  
Patrícia Rocha Martins ◽  
Josiane Fakhry ◽  
Adriana Jacaúna de Oliveira ◽  
Thayse Batista Moreira ◽  
Linda J. Fothergill ◽  
...  

Author(s):  
Patrícia Rocha Martins ◽  
Josiane Fakhry ◽  
Adriana Jacaúna de Oliveira ◽  
Thayse Batista Moreira ◽  
Linda J. Fothergill ◽  
...  

2020 ◽  
Vol 232 ◽  
pp. 151559 ◽  
Author(s):  
Ewa Lepiarczyk ◽  
Agnieszka Bossowska ◽  
Marta Majewska ◽  
Agnieszka Skowrońska ◽  
Jerzy Kaleczyc ◽  
...  
Keyword(s):  

Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 142
Author(s):  
Michał Bulc ◽  
Katarzyna Palus ◽  
Jarosław Całka

Somatostatin (SOM) is the most common agent in the gastrointestinal (GI) tract that is involved in the regulation of several gastric functions, as well as in gastric disorders. Hyperglycemia, which develops as a consequence of improperly treated diabetes, can cause numerous disturbances in the appropriate functioning of the gastrointestinal tract. High glucose level is toxic to neurons. One of the lines of defense of neurons against this glucotoxicity are changes in their chemical coding. To better understood the role of SOM secreted by enteric neurons in neuronal response on elevated glucose level, pancreatic β cells were destroyed using streptozotocin. Due to the close similarity of the pig to humans, especially the GI tract, the current study used pigs as an animal model. The results revealed that the number of enteric neurons immunoreactive to SOM (SOM-IR) in a physiological state clearly depend on the part of the GI tract studied. In turn, experimentally induced diabetes caused changes in the number of SOM-IR neurons. The least visible changes were observed in the stomach, where an increase in SOM-IR neurons was observed, only in the submucosal plexus in the corpus. However, diabetes led to an increase in the population of myenteric and submucosal neurons immunoreactive to SOM in all segments of the small intestine. The opposite situation occurred in the descending colon, where a decrease in the number of SOM-IR neurons was visible. This study underlines the significant role of SOM expressed in enteric nervous system neurons during diabetes.


2019 ◽  
Vol 379 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Therese E Fazio Coles ◽  
Linda J Fothergill ◽  
Billie Hunne ◽  
Mehrdad Nikfarjam ◽  
Adam Testro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document