scholarly journals Botulinum Toxin Type A Induces Changes in the Chemical Coding of Substance P-Immunoreactive Dorsal Root Ganglia Sensory Neurons Supplying the Porcine Urinary Bladder

Toxins ◽  
2015 ◽  
Vol 7 (11) ◽  
pp. 4797-4816 ◽  
Author(s):  
Agnieszka Bossowska ◽  
Ewa Lepiarczyk ◽  
Urszula Mazur ◽  
Paweł Janikiewicz ◽  
Włodzimierz Markiewicz
2012 ◽  
Vol 15 (2) ◽  
pp. 345-353 ◽  
Author(s):  
A. Bossowska ◽  
M. Majewski

Botulinum toxin type A-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder Botulinum toxin type A (BTX) is a potent neurotoxin, which in recent years has been effectively applied in experimental treatments of many neurogenic disorders of the urinary bladder. BTX is a selective, presynaptically-acting blocking agent of acetylcholine release from nerve terminals what, in turn, leads to the cessation of somatic motor and/or parasympathetic transmission. However, application of this toxin in urological practice is still in the developmental stages and the full mechanism of its action remain elusive. Thus, the present study was aimed at investigating the neurochemical characterization of dorsal root ganglion (DRG) neurons supplying the porcine urinary bladder after BTX treatment. Retrograde tracer Fast Blue (FB) was injected into the urinary bladder wall in six juvenile female pigs and three weeks later, intramural bladder injections of BTX (100 IU per animal) were carried out in all the animals. After a week, DRG from L1 to Cq1 were harvested from the pigs and neurochemical characterization of FB+ neurons was performed using double-labeling immunofluorescence technique on 10-μm-thick cryostat sections. BTX injections led to a significant decrease in the number of FB+ neurons containing substance P (SP), calcitonin gene-related peptide (CGRP), calbindin (CB), somatostatin (SOM) and neuronal nitric oxide synthase (nNOS) when compared with that found in the healthy animals (19% vs. 45%, 18% vs. 36%, 0.6% vs. 3%, 0.4 vs. 4% and 0.1% vs. 6%, respectively) These data demonstrated that BTX changed the chemical coding of bladder sensory neurons, and therefore this drug should be taken into consideration when it planning experimental therapy of selected neurogenic bladder disorders.


2009 ◽  
Vol 13 (S1) ◽  
Author(s):  
A. Coelho ◽  
P. Dinis ◽  
R. Pinto ◽  
T. Gorgal ◽  
C. Silva ◽  
...  

Neuroscience ◽  
2017 ◽  
Vol 358 ◽  
pp. 137-145 ◽  
Author(s):  
Ivica Matak ◽  
Valéria Tékus ◽  
Kata Bölcskei ◽  
Zdravko Lacković ◽  
Zsuzsanna Helyes

2009 ◽  
Vol 181 (4S) ◽  
pp. 149-150
Author(s):  
Francisco R Cruz ◽  
Ana Coelho ◽  
Paulo O Dinis ◽  
Rui Pinto ◽  
Tiago Gorgal ◽  
...  

2011 ◽  
Vol 14 (2) ◽  
pp. 181-189 ◽  
Author(s):  
E. Lepiarczyk ◽  
A. Bossowska ◽  
J. Kaleczyc ◽  
M. Majewski

The influence of botulinum toxin type A (BTX) on the immunohistochemical characteristics of noradrenergic and cholinergic nerve fibers supplying the porcine urinary bladder wall Botulinum toxin (BTX) belongs to a family of neurotoxins which strongly influence the function of autonomic neurons supplying the urinary bladder. Accordingly, BTX has been used as an effective drug in experimental therapies of a range of neurogenic bladder disorders. However, there is no detailed information dealing with the influence of BTX on the morphological and chemical properties of nerve fibres supplying the urinary bladder wall. Therefore, the present study investigated, using double-labeling immunohistochemistry, the distribution, relative frequency and chemical coding of cholinergic and noradrenergic nerve fibers supplying the wall of the urinary bladder in normal female pigs (n=6) and in the pigs (n=6) after intravesical BTX injections. In the pigs injected with BTX, the number of adrenergic (DβH-positive) nerve fibers distributed in the bladder wall (urothelium, submucosa and muscle coat) was distinctly higher while the number of cholinergic (VAChT-positive) nerve terminals was lower than that found in the control animals. Moreover, the injections of BTX resulted in some changes dealing with the chemical coding of the adrenergic nerve fibers. In contrast to the normal pigs, in BTX injected animals the number of DβH/NPY- or DβH/CGRP-positive axons was higher in the muscle coat, and some fibres distributed in the urothelium and submucosa expressed immunoreactivity to CGRP. The results obtained suggest that the therapeutic effects of BTX on the urinary bladder might be dependent on changes in the distribution and chemical coding of nerve fibers supplying this organ.


2007 ◽  
Vol 85 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Yi-Ping Hou ◽  
Yong-Ping Zhang ◽  
Yan-Feng Song ◽  
Chun-Min Zhu ◽  
Yin-Chun Wang ◽  
...  

The effect of botulinum toxin type A (BTX-A) on rat pyloric myoelectrical activity in vivo and the content and distribution of substance P (SP) in pylorus were investigated, respectively, with electromyography, radioimmunoassay, and immunohistochemistry. A pair of electrodes for recording pyloric myoelectrical activity and a guide cannula for drug injection were implanted into the pylorus. The changes of pyloric myoelectrical activity were recorded followed vehicle, 10, 20, and 40 U/kg body mass of BTX-A injection. Pyloric tissues were dissected for radioimmunoassay and immunohistochemistry after recording. The 3 dosages of BTX-A injections caused the reduction of slow wave of pyloric myoelectrical activity in amplitude but not in frequency and the diminishment of spike activity in amplitude and spike burst. The inhibitory effect of 20 U/kg BTX-A was significantly different from that of 10 U/kg (p < 0.05), but not from the effect of 40 U/kg administration (p > 0.05). After BTX-A intrasphincteric injection, SP content was reduced in the pylorus, and cell number of SP-immunoreactivity was decreased more in myenteric nerve plexus of circular muscle and in mucosa of pylori. In conclusion, BTX-A inhibits pyloric myoelectrical slow activity in amplitude and spike activity and weakens pyloric smooth muscle contractility depending on threshold of dose or concentration. BTX-A-induced inhibition of pyloric myoelectrical activity implies a mechanism of inhibiting SP release from the autonomic and enteric nervous terminals in the pylorus.


Sign in / Sign up

Export Citation Format

Share Document