scholarly journals Comparison of neural network models with aerodynamic and empirical models toward real-time estimation of the number of air exchanges per hour of a naturally ventilated greenhouse

2019 ◽  
Vol 75 (3) ◽  
pp. 166-172 ◽  
Author(s):  
Ryo MATSUDA ◽  
Kota HAYANO ◽  
Satoshi YAGI ◽  
Kazuhiro FUJIWARA
2020 ◽  
Vol 10 (3) ◽  
pp. 766 ◽  
Author(s):  
Alec Wright ◽  
Eero-Pekka Damskägg ◽  
Lauri Juvela ◽  
Vesa Välimäki

This article investigates the use of deep neural networks for black-box modelling of audio distortion circuits, such as guitar amplifiers and distortion pedals. Both a feedforward network, based on the WaveNet model, and a recurrent neural network model are compared. To determine a suitable hyperparameter configuration for the WaveNet, models of three popular audio distortion pedals were created: the Ibanez Tube Screamer, the Boss DS-1, and the Electro-Harmonix Big Muff Pi. It is also shown that three minutes of audio data is sufficient for training the neural network models. Real-time implementations of the neural networks were used to measure their computational load. To further validate the results, models of two valve amplifiers, the Blackstar HT-5 Metal and the Mesa Boogie 5:50 Plus, were created, and subjective tests were conducted. The listening test results show that the models of the first amplifier could be identified as different from the reference, but the sound quality of the best models was judged to be excellent. In the case of the second guitar amplifier, many listeners were unable to hear the difference between the reference signal and the signals produced with the two largest neural network models. This study demonstrates that the neural network models can convincingly emulate highly nonlinear audio distortion circuits, whilst running in real-time, with some models requiring only a relatively small amount of processing power to run on a modern desktop computer.


2015 ◽  
Vol 51 ◽  
pp. 60-69 ◽  
Author(s):  
Gabriele Maria Lozito ◽  
Maurizio Schmid ◽  
Silvia Conforto ◽  
Francesco Riganti Fulginei ◽  
Daniele Bibbo

Prediction of Tunnel support pressure up to an accurate and reliable degree is difficult, but of utmost importance. Empirical models are available with different set of parameters, mostly are based on the rock classification parameters. A feed forward neural network based predictive models from the data collected from literature for the Himalayan tunnels have been developed. The input variables in the developed neural network models were depth of over burden, radius of tunnel, normalised closure. The fourth input variable was rock mass quality or rock mass number or rock mass rating. The output was a support pressure. Sensitivity analysis relating the variables affecting the support pressure has been performed. The developed neural network models were compared with models developed based on the multiple linear regression analysis as well as with empirical models already available in literature. Finally, model equations have been presented based on the connection weight.


Sign in / Sign up

Export Citation Format

Share Document