Real-time path planning in dynamic environments: a comparison of three neural network models

Author(s):  
D.V. Lebedev ◽  
J.J. Steil ◽  
H. Ritter
2020 ◽  
Vol 10 (3) ◽  
pp. 766 ◽  
Author(s):  
Alec Wright ◽  
Eero-Pekka Damskägg ◽  
Lauri Juvela ◽  
Vesa Välimäki

This article investigates the use of deep neural networks for black-box modelling of audio distortion circuits, such as guitar amplifiers and distortion pedals. Both a feedforward network, based on the WaveNet model, and a recurrent neural network model are compared. To determine a suitable hyperparameter configuration for the WaveNet, models of three popular audio distortion pedals were created: the Ibanez Tube Screamer, the Boss DS-1, and the Electro-Harmonix Big Muff Pi. It is also shown that three minutes of audio data is sufficient for training the neural network models. Real-time implementations of the neural networks were used to measure their computational load. To further validate the results, models of two valve amplifiers, the Blackstar HT-5 Metal and the Mesa Boogie 5:50 Plus, were created, and subjective tests were conducted. The listening test results show that the models of the first amplifier could be identified as different from the reference, but the sound quality of the best models was judged to be excellent. In the case of the second guitar amplifier, many listeners were unable to hear the difference between the reference signal and the signals produced with the two largest neural network models. This study demonstrates that the neural network models can convincingly emulate highly nonlinear audio distortion circuits, whilst running in real-time, with some models requiring only a relatively small amount of processing power to run on a modern desktop computer.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Jianjun Ni ◽  
Liuying Wu ◽  
Pengfei Shi ◽  
Simon X. Yang

Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142096868
Author(s):  
Marcel Huptych ◽  
Sascha Röck

This article proposes a new algorithm for real-time path planning in dynamic environments based on space-discretized curve-shortening flows. The so-called curve-shortening flow method shares working principles with the well-established elastic bands method and overcomes some of its drawbacks concerning numerical robustness and parameterability. This is achieved by efficiently applying semi-implicit time integration for evolving the path and secondly by developing a methodology for setting the algorithm’s parameters based on physical quantities. Different short- and long-term validation scenarios are performed with three interlinked instances of the curve-shortening flow method each running on an individual industrial control and driving a real or a simulated unmanned aerial vehicle.


Author(s):  
Avneesh Sud ◽  
Erik Andersen ◽  
Sean Curtis ◽  
Ming Lin ◽  
Dinesh Manocha

Sign in / Sign up

Export Citation Format

Share Document