A decision support system for last train timetable optimization in urban rail transit network

Author(s):  
Xi Jiang ◽  
Zhen Qu
2019 ◽  
Vol 52 (9-10) ◽  
pp. 1461-1479
Author(s):  
Yu Yao ◽  
Xiaoning Zhu ◽  
Hua Shi ◽  
Pan Shang

As an important means of transportation, urban rail transit provides effective mobility, sufficient punctuality, strong security, and environment-friendliness in large cities. However, this transportation mode cannot offer a 24-h service to passengers with the consideration of operation cost and the necessity of maintenance, that is, a final time should be set. Therefore, operators need to design a last train timetable in consideration of the number of successful travel passengers and the total passenger transfer waiting time. This paper proposes a bi-level last train timetable optimization model. Its upper level model aims to maximize the number of passengers who travel by the last train service successful and minimize their transfer waiting time, and its lower level model aims to determine passenger route choice considering the detour routing strategy based on the last train timetable. A genetic algorithm is proposed to solve the upper level model, and the lower level model is solved by a semi-assignment algorithm. The implementation of the proposed model in the Beijing urban rail transit network proves that the model can optimize not only the number of successful transfer directions and successful travel passengers but also the passenger transfer waiting time of successful transfer directions. The optimization results can provide operators detailed information about the stations inaccessible to passengers from all origin stations and uncommon path guides for passengers of all origin–destination pairs. These types of information facilitate the operation of real-world urban rail transit systems.


2014 ◽  
Vol 488-489 ◽  
pp. 1439-1443
Author(s):  
Jin Hai Li ◽  
Jian Feng Liu

Hyperpaths enumeration is one of the basic procedures in many traffic planning issues. As a result of its distinctive structure, hyperpaths in Urban Rail Transit Network (URTN) are different from those in road network. Typically, one may never visit a station more than once and would never transfer from one line to another that has been visited in a loopless URTN, meaning that stations a hyperpath traversed cannot be repeated, neither do lines in loopless networks. This paper studies the relationships between feasible path and the shortest path in terms of travel costs. In this paper, a new definition of hyperpath in URTN is proposed and a new algorithm based on the breadth first searching (BFS) method is presented to enumerate the hyperpaths. The algorithm can safely avoid hyperpath omission and can even be applied in networks containing loops as well. The influence of parameters on hyperpaths is studied by experimentally finding hyperpaths in the subway network in Beijing. A group of suggested parameter pairs are then given. Finally, a numerical experiment is used to illustrate the validity of the proposed algorithm. The results imply the significance of the convergence of the BFS algorithm which can be used to search hyperpaths in large scale URTN even with loop.


2014 ◽  
Vol 513-517 ◽  
pp. 3958-3963 ◽  
Author(s):  
Bo Gao ◽  
Ling Xi Zhu ◽  
Xue Mei Xiao

Based on the multi-source information fusion and complex network theory, through studying the effective matching and integration of safety equipment and spatial information of urban rail transit network operation, a safety assessment model is proposed: through equipment fusion and the node fusion, the global safety parameter is obtained, which is accurate in description and evaluation of urban rail transit operating than the partial safety factors and realize the transform from microscopic description to macroscopic description.


Sign in / Sign up

Export Citation Format

Share Document