feasible path
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 55)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Changlin Ding ◽  
Yibao Dong ◽  
Yuanbo Wang ◽  
Jianbing Shi ◽  
Shilong Zhai ◽  
...  

Abstract Acoustic metamaterials (AMMs) and acoustic metasurfaces (AMSs) are artificially structured materials with the unique properties not found in natural materials. We reviewed herein the properties of AMM and AMS that have been designed using the meta-atoms of split hollow spheres (SHSs) and hollow tubes (HTs) or meta-molecules of split hollow tubes (SHTs) with local resonance. AMMs composed of SHSs or HTs display a transmission dip with negative modulus or negative mass density. AMMs composited with SHSs and HTs present a transmission peak and a phase fluctuation in the overlapping resonant frequency region, indicating that they simultaneously have a negative modulus and a negative mass density. Furthermore, the meta-molecule AMMs with SHTs also exhibit double-negative properties. Moreover, the acoustic meta-atoms or meta-molecules can be used to fabricate acoustic topological metamaterials with topologically protected edge states propagation. These meta-atoms and meta-molecules can also attain phase discontinuity near the resonant frequency, and thus they can be used to design AMSs with the anomalous manipulation for acoustic waves. The various tunability of the meta-molecules provides a feasible path to achieve broadband AMS.


Author(s):  
Bahram Sadeghi Bigham

In the minimum constraint removal ([Formula: see text]), there is no feasible path to move from a starting point towards the goal, and the minimum constraints should be removed in order to find a collision-free path. It has been proved that [Formula: see text] problem is NP-hard when constraints have arbitrary shapes or even they are in shape of convex polygons. However, it has a simple linear solution when constraints are lines and the problem is open for other cases yet. In this paper, using a reduction from Subset Sum problem, in three steps, we show that the problem is NP-hard for both weighted and unweighted line segments.


2021 ◽  
Vol 11 (24) ◽  
pp. 11777
Author(s):  
Zhenping Wu ◽  
Zhijun Meng ◽  
Wenlong Zhao ◽  
Zhe Wu

As a sampling-based pathfinding algorithm, Rapidly Exploring Random Trees (RRT) has been widely used in motion planning problems due to the ability to find a feasible path quickly. However, the RRT algorithm still has several shortcomings, such as the large variance in the search time, poor performance in narrow channel scenarios, and being far from the optimal path. In this paper, we propose a new RRT-based path find algorithm, Fast-RRT, to find a near-optimal path quickly. The Fast-RRT algorithm consists of two modules, including Improved RRT and Fast-Optimal. The former is aims to quickly and stably find an initial path, and the latter is to merge multiple initial paths to obtain a near-optimal path. Compared with the RRT algorithm, Fast-RRT shows the following improvements: (1) A Fast-Sampling strategy that only samples in the unreached space of the random tree was introduced to improve the search speed and algorithm stability; (2) A Random Steering strategy expansion strategy was proposed to solve the problem of poor performance in narrow channel scenarios; (3) By fusion and adjustment of paths, a near-optimal path can be faster found by Fast-RRT, 20 times faster than the RRT* algorithm. Owing to these merits, our proposed Fast-RRT outperforms RRT and RRT* in both speed and stability during experiments.


2021 ◽  
Vol 10 (11) ◽  
pp. 785
Author(s):  
Zhonghua Hong ◽  
Pengfei Sun ◽  
Xiaohua Tong ◽  
Haiyan Pan ◽  
Ruyan Zhou ◽  
...  

To overcome the limitation of poor processing times for long-distance off-road path planning, an improved A-Star algorithm based on terrain data is proposed in this study. The improved A-Star algorithm for long-distance off-road path planning tasks was developed to identify a feasible path between the start and destination based on a terrain data map generated using a digital elevation model. This study optimised the algorithm in two aspects: data structure, retrieval strategy. First, a hybrid data structure of the minimum heap and 2D array greatly reduces the time complexity of the algorithm. Second, an optimised search strategy was designed that does not check whether the destination is reached in the initial stage of searching for the global optimal path, thus improving execution efficiency. To evaluate the efficiency of the proposed algorithm, three different off-road path planning tasks were examined for short-, medium-, and long-distance path planning tasks. Each group of tasks corresponded to three different off-road vehicles, and nine groups of experiments were conducted. The experimental results show that the processing efficiency of the proposed algorithm is significantly better than that of the conventional A-Star algorithm. Compared with the conventional A-Star algorithm, the path planning efficiency of the improved A-Star algorithm was accelerated by at least 4.6 times, and the maximum acceleration reached was 550 times for long-distance off-road path planning. The simulation results show that the efficiency of long-distance off-road path planning was greatly improved by using the improved algorithm.


2021 ◽  
Vol 11 (16) ◽  
pp. 7599
Author(s):  
Qiang Cheng ◽  
Wei Zhang ◽  
Hongshuai Liu ◽  
Ying Zhang ◽  
Lina Hao

Autonomous, flexible, and human–robot collaboration are the key features of the next-generation robot. Such unstructured and dynamic environments bring great challenges in online adaptive path planning. The robots have to avoid dynamic obstacles and follow the original task path as much as possible. A robust and efficient online path planning method is required accordingly. A method based on the Gaussian Mixture Model (GMM), Gaussian Mixture Regression (GMR), and the Probabilistic Roadmap (PRM) is proposed to overcome the above difficulties. During the offline stage, the GMM was used to model teaching data, and it can represent the offline-demonstrated motion and constraints. The optimal solution was encoded in the mean value, while the environmental constraints were encoded in the variance value. The GMR generated a smooth path with variance as the resample space according to the GMM of the teaching data. This representation isolated the old environment model with the novel obstacle. During the online stage, a Modified Probabilistic Roadmap (MPRM) was used to plan the motion locally. Because the GMM provides the distribution of all the feasible motion, the sampling space of the MPRM was generated by the variable density resampling method, and then, the roadmap was constructed according to the Euclidean and Probability Distance (EPD). The Dijkstra algorithm was used to search for the feasible path between the starting point and the target point. Finally, shortcut pruning and B-spline interpolation were used to generate a smooth path. During the simulation experiment, two obstacles were added to the recurrent scene to indicate the difference from the teaching scene, and the GMM/GMR-MPRM algorithm was used for path planning. The result showed that it can still plan a feasible path when the recurrent scene is not the same as the teaching scene. Finally, the effectiveness of the algorithm was verified on the IRB1200 robot experiment platform.


2021 ◽  
Author(s):  
Marshall Allen ◽  
Tanner Kirk ◽  
Richard Malak ◽  
Raymundo Arroyave

Abstract Compositionally graded alloys, a special class of functionally graded materials (FGMs), utilize localized variations in composition within a single metal part to achieve higher performance than traditional single-material parts. In previous work [1], the authors presented a computational design methodology that avoids common issues which limit a gradient alloy’s usefulness or feasibility, such as deleterious phases or properties, and also optimizes gradients for performance objectives. However, the previous methodology only samples the interior of a composition space, meaning designed gradients must include all elements in the space at every step in the gradient. Because the addition of even a small amount of an alloying element can introduce a new deleterious phase, this characteristic often neglects potentially simpler solutions to otherwise unsolvable problems and, consequently, discourages the addition of new elements to the state space. The present work improves upon the previous methodology by introducing a sampling method that includes subspaces with fewer elements in the design search. The new sampling method samples within an artificial expanded form of the state space and projects samples outside the true region to the nearest true subspace. This method is evaluated first by observing the distribution of samples in each subspace of a 2-D, 3-D, and 4-D state space. Next, a parametric study in a synthetic 2-D problem compares the performance of the new sampling scheme to the previous methodology. Lastly, the updated methodology is applied to design a gradient from stainless steel to equiatomic NiTi that has practical uses such as embedded shape memory actuation and for which the previous methodology fails to find a feasible path.


2021 ◽  
Author(s):  
Ademola Oridate ◽  
Mitchell Pryor ◽  
Carolyn Seepersad

Abstract Industrial manipulators often interact with large and complex objects for a variety of automation tasks. Finding a feasible path for the robot end-effector that ensures task success is often non-trivial due to considerations such as reachability, singularity avoidance, and collision avoidance. This paper proposes an approach to expand the search space for feasible robot trajectories (and search for an optimal solution) by taking advantage of task redundancy for certain tasks while ensuring task completion. The effort builds on previous work enabling virtual fixture generation for complex shapes given CAD or scan data. The proposed method has been developed into a trajectory planning library on the ROS (Robot Operating System) framework and tested by simulating an interaction of a six-axis industrial robot with an aircraft fuselage. Results show increased coverage of task area with minimal robot base placements.


Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
Manoj Kumar Muni ◽  
Saroj Kumar ◽  
Dayal R. Parhi ◽  
Krishna Kant Pandey

Abstract This paper presents an efficient water cycle algorithm based on the processes of water cycle with movement of streams and rivers in to the sea. This optimization algorithm is applied to obtain the optimal feasible path with minimum travel duration during motion planning of both single and multiple humanoid robots in both static and dynamic cluttered environments. This technique discards the rainfall process considering falling water droplets forming streams during raining and the process of flowing. The flowing process searches the solution space and finds the more accurate solution and represents the local search. Motion planning of humanoids is carried out in V-REP software. The performance of proposed algorithm is tested in experimental scenario under laboratory conditions and shows the developed algorithm performs well in terms of obtaining optimal path length and minimum time span of travel. Here, navigational analysis has been performed on both single as well as multiple humanoid robots. Statistical analysis of results obtained from both simulation and experimental environments is carried out for both single and multiple humanoids, along with the comparison with another existing optimization technique that indicate the strength and effectiveness of the proposed water cycle algorithm.


Sign in / Sign up

Export Citation Format

Share Document