scholarly journals A Recursive Shortcut for CEGAR: Application To The Modal Logic K Satisfiability Problem

Author(s):  
Jean-Marie Lagniez ◽  
Daniel Le Berre ◽  
Tiago de Lima ◽  
Valentin Montmirail

Counter-Example-Guided Abstraction Refinement (CEGAR) has been very successful in model checking large systems. Since then, it has been applied to many different problems. It especially proved to be an highly successful practical approach for solving the PSPACE complete QBF problem. In this paper, we propose a new CEGAR-like approach for tackling PSPACE complete problems that we call RECAR (Recursive Explore and Check Abstraction Refinement). We show that this generic approach is sound and complete. Then we propose a specific implementation of the RECAR approach to solve the modal logic K satisfiability problem. We implemented both a CEGAR and a RECAR approach for the modal logic K satisfiability problem within the solver MoSaiC. We compared experimentally those approaches to the state-of-the-art solvers for that problem. The RECAR approach outperforms the CEGAR one for that problem and also compares favorably against the state-of-the-art on the benchmarks considered.

2014 ◽  
Vol 50 ◽  
pp. 265-319 ◽  
Author(s):  
M. Suda

Property Directed Reachability (PDR) is a very promising recent method for deciding reachability in symbolically represented transition systems. While originally conceived as a model checking algorithm for hardware circuits, it has already been successfully applied in several other areas. This paper is the first investigation of PDR from the perspective of automated planning. Similarly to the planning as satisfiability paradigm, PDR draws its strength from internally employing an efficient SAT-solver. We show that most standard encoding schemes of planning into SAT can be directly used to turn PDR into a planning algorithm. As a non-obvious alternative, we propose to replace the SAT-solver inside PDR by a planning-specific procedure implementing the same interface. This SAT-solver free variant is not only more efficient, but offers additional insights and opportunities for further improvements. An experimental comparison to the state of the art planners finds it highly competitive, solving most problems on several domains.


Author(s):  
Makai Mann ◽  
Ahmed Irfan ◽  
Alberto Griggio ◽  
Oded Padon ◽  
Clark Barrett

AbstractWe develop a framework for model checking infinite-state systems by automatically augmenting them with auxiliary variables, enabling quantifier-free induction proofs for systems that would otherwise require quantified invariants. We combine this mechanism with a counterexample-guided abstraction refinement scheme for the theory of arrays. Our framework can thus, in many cases, reduce inductive reasoning with quantifiers and arrays to quantifier-free and array-free reasoning. We evaluate the approach on a wide set of benchmarks from the literature. The results show that our implementation often outperforms state-of-the-art tools, demonstrating its practical potential.


Author(s):  
Freark I. van der Berg

AbstractMulti-threaded unit tests for high-performance thread-safe data structures typically do not test all behaviour, because only a single scheduling of threads is witnessed per invocation of the unit tests. Model checking such unit tests allows to verify all interleavings of threads. These tests could be written in or compiled to LLVM IR. Existing LLVM IR model checkers like divine and Nidhugg, use an LLVM IR interpreter to determine the next state. This paper introduces llmc, a multi-core explicit-state model checker of multi-threaded LLVM IR that translates LLVM IR to LLVM IR that is executed instead of interpreted. A test suite of 24 tests, stressing data structures, shows that on average llmc clearly outperforms the state-of-the-art tools divine and Nidhugg.


2019 ◽  
Vol 64 (6) ◽  
pp. 1051-1091
Author(s):  
Ákos Hajdu ◽  
Zoltán Micskei

Abstract Automated formal verification is often based on the Counterexample-Guided Abstraction Refinement (CEGAR) approach. Many variants of CEGAR have been developed over the years as different problem domains usually require different strategies for efficient verification. This has lead to generic and configurable CEGAR frameworks, which can incorporate various algorithms. In our paper we propose six novel improvements to different aspects of the CEGAR approach, including both abstraction and refinement. We implement our new contributions in the Theta framework allowing us to compare them with state-of-the-art algorithms. We conduct an experiment on a diverse set of models to address research questions related to the effectiveness and efficiency of our new strategies. Results show that our new contributions perform well in general. Moreover, we highlight certain cases where performance could not be increased or where a remarkable improvement is achieved.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Long Zhang ◽  
Wenyan Hu ◽  
Wanxia Qu ◽  
Yang Guo ◽  
Sikun Li

Mobile cyber-physical systems (CPSs) are very hard to verify, because of asynchronous communication and the arbitrary number of components. Verification via model checking typically becomes impracticable due to the state space explosion caused by the system parameters and concurrency. In this paper, we propose a formal approach to verify the safety properties of parameterized protocols in mobile CPS. By using counter abstraction, the protocol is modeled as a Petri net. Then, a novel algorithm, which uses IC3 (the state-of-the-art model checking algorithm) as the back-end engine, is presented to verify the Petri net model. The experimental results show that our new approach can greatly scale the verification capabilities compared favorably against several recently published approaches. In addition to solving the instances fast, our method is significant for its lower memory consumption.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2003 ◽  
Vol 48 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Eric Amsel
Keyword(s):  

1968 ◽  
Vol 13 (9) ◽  
pp. 479-480
Author(s):  
LEWIS PETRINOVICH
Keyword(s):  

1984 ◽  
Vol 29 (5) ◽  
pp. 426-428
Author(s):  
Anthony R. D'Augelli

1991 ◽  
Vol 36 (2) ◽  
pp. 140-140
Author(s):  
John A. Corson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document