scholarly journals Efficient Strategies for CEGAR-Based Model Checking

2019 ◽  
Vol 64 (6) ◽  
pp. 1051-1091
Author(s):  
Ákos Hajdu ◽  
Zoltán Micskei

Abstract Automated formal verification is often based on the Counterexample-Guided Abstraction Refinement (CEGAR) approach. Many variants of CEGAR have been developed over the years as different problem domains usually require different strategies for efficient verification. This has lead to generic and configurable CEGAR frameworks, which can incorporate various algorithms. In our paper we propose six novel improvements to different aspects of the CEGAR approach, including both abstraction and refinement. We implement our new contributions in the Theta framework allowing us to compare them with state-of-the-art algorithms. We conduct an experiment on a diverse set of models to address research questions related to the effectiveness and efficiency of our new strategies. Results show that our new contributions perform well in general. Moreover, we highlight certain cases where performance could not be increased or where a remarkable improvement is achieved.

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1057
Author(s):  
Gianpiero Cabodi ◽  
Paolo Camurati ◽  
Fabrizio Finocchiaro ◽  
Danilo Vendraminetto

Spectre and Meltdown attacks in modern microprocessors represent a new class of attacks that have been difficult to deal with. They underline vulnerabilities in hardware design that have been going unnoticed for years. This shows the weakness of the state-of-the-art verification process and design practices. These attacks are OS-independent, and they do not exploit any software vulnerabilities. Moreover, they violate all security assumptions ensured by standard security procedures, (e.g., address space isolation), and, as a result, every security mechanism built upon these guarantees. These vulnerabilities allow the attacker to retrieve leaked data without accessing the secret directly. Indeed, they make use of covert channels, which are mechanisms of hidden communication that convey sensitive information without any visible information flow between the malicious party and the victim. The root cause of this type of side-channel attacks lies within the speculative and out-of-order execution of modern high-performance microarchitectures. Since modern processors are hard to verify with standard formal verification techniques, we present a methodology that shows how to transform a realistic model of a speculative and out-of-order processor into an abstract one. Following related formal verification approaches, we simplify the model under consideration by abstraction and refinement steps. We also present an approach to formally verify the abstract model using a standard model checker. The theoretical flow, reliant on established formal verification results, is introduced and a sketch of proof is provided for soundness and correctness. Finally, we demonstrate the feasibility of our approach, by applying it on a pipelined DLX RISC-inspired processor architecture. We show preliminary experimental results to support our claim, performing Bounded Model-Checking with a state-of-the-art model checker.


Author(s):  
Makai Mann ◽  
Ahmed Irfan ◽  
Alberto Griggio ◽  
Oded Padon ◽  
Clark Barrett

AbstractWe develop a framework for model checking infinite-state systems by automatically augmenting them with auxiliary variables, enabling quantifier-free induction proofs for systems that would otherwise require quantified invariants. We combine this mechanism with a counterexample-guided abstraction refinement scheme for the theory of arrays. Our framework can thus, in many cases, reduce inductive reasoning with quantifiers and arrays to quantifier-free and array-free reasoning. We evaluate the approach on a wide set of benchmarks from the literature. The results show that our implementation often outperforms state-of-the-art tools, demonstrating its practical potential.


Author(s):  
Jean-Marie Lagniez ◽  
Daniel Le Berre ◽  
Tiago de Lima ◽  
Valentin Montmirail

Counter-Example-Guided Abstraction Refinement (CEGAR) has been very successful in model checking large systems. Since then, it has been applied to many different problems. It especially proved to be an highly successful practical approach for solving the PSPACE complete QBF problem. In this paper, we propose a new CEGAR-like approach for tackling PSPACE complete problems that we call RECAR (Recursive Explore and Check Abstraction Refinement). We show that this generic approach is sound and complete. Then we propose a specific implementation of the RECAR approach to solve the modal logic K satisfiability problem. We implemented both a CEGAR and a RECAR approach for the modal logic K satisfiability problem within the solver MoSaiC. We compared experimentally those approaches to the state-of-the-art solvers for that problem. The RECAR approach outperforms the CEGAR one for that problem and also compares favorably against the state-of-the-art on the benchmarks considered.


Author(s):  
Jacques Thomassen ◽  
Carolien van Ham

This chapter presents the research questions and outline of the book, providing a brief review of the state of the art of legitimacy research in established democracies, and discusses the recurring theme of crisis throughout this literature since the 1960s. It includes a discussion of the conceptualization and measurement of legitimacy, seeking to relate legitimacy to political support, and reflecting on how to evaluate empirical indicators: what symptoms indicate crisis? This chapter further explains the structure of the three main parts of the book. Part I evaluates in a systematic fashion the empirical evidence for legitimacy decline in established democracies; Part II reappraises the validity of theories of legitimacy decline; and Part II investigates what (new) explanations can account for differences in legitimacy between established democracies. The chapter concludes with a short description of the chapters included in the volume.


Author(s):  
Akrati Saxena ◽  
Harita Reddy

AbstractOnline informal learning and knowledge-sharing platforms, such as Stack Exchange, Reddit, and Wikipedia have been a great source of learning. Millions of people access these websites to ask questions, answer the questions, view answers, or check facts. However, one interesting question that has always attracted the researchers is if all the users share equally on these portals, and if not then how the contribution varies across users, and how it is distributed? Do different users focus on different kinds of activities and play specific roles? In this work, we present a survey of users’ social roles that have been identified on online discussion and Q&A platforms including Usenet newsgroups, Reddit, Stack Exchange, and MOOC forums, as well as on crowdsourced encyclopedias, such as Wikipedia, and Baidu Baike, where users interact with each other through talk pages. We discuss the state of the art on capturing the variety of users roles through different methods including the construction of user network, analysis of content posted by users, temporal analysis of user activity, posting frequency, and so on. We also discuss the available datasets and APIs to collect the data from these platforms for further research. The survey is concluded with open research questions.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 801
Author(s):  
Talita Nicolau ◽  
Núbio Gomes Filho ◽  
Andrea Zille

In normal conditions, discarding single-use personal protective equipment after use is the rule for its users due to the possibility of being infected, particularly for masks and filtering facepiece respirators. When the demand for these protective tools is not satisfied by the companies supplying them, a scenario of shortages occurs, and new strategies must arise. One possible approach regards the disinfection of these pieces of equipment, but there are multiple methods. Analyzing these methods, Ultraviolet-C (UV-C) becomes an exciting option, given its germicidal capability. This paper aims to describe the state-of-the-art for UV-C sterilization in masks and filtering facepiece respirators. To achieve this goal, we adopted a systematic literature review in multiple databases added to a snowball method to make our sample as robust as possible and encompass a more significant number of studies. We found that UV-C’s germicidal capability is just as good as other sterilization methods. Combining this characteristic with other advantages makes UV-C sterilization desirable compared to other methods, despite its possible disadvantages.


Author(s):  
Jose A. Gallud ◽  
Monica Carreño ◽  
Ricardo Tesoriero ◽  
Andrés Sandoval ◽  
María D. Lozano ◽  
...  

AbstractTechnology-based education of children with special needs has become the focus of many research works in recent years. The wide range of different disabilities that are encompassed by the term “special needs”, together with the educational requirements of the children affected, represent an enormous multidisciplinary challenge for the research community. In this article, we present a systematic literature review of technology-enhanced and game-based learning systems and methods applied on children with special needs. The article analyzes the state-of-the-art of the research in this field by selecting a group of primary studies and answering a set of research questions. Although there are some previous systematic reviews, it is still not clear what the best tools, games or academic subjects (with technology-enhanced, game-based learning) are, out of those that have obtained good results with children with special needs. The 18 articles selected (carefully filtered out of 614 contributions) have been used to reveal the most frequent disabilities, the different technologies used in the prototypes, the number of learning subjects, and the kind of learning games used. The article also summarizes research opportunities identified in the primary studies.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Asmaa El Hannani ◽  
Rahhal Errattahi ◽  
Fatima Zahra Salmam ◽  
Thomas Hain ◽  
Hassan Ouahmane

AbstractSpeech based human-machine interaction and natural language understanding applications have seen a rapid development and wide adoption over the last few decades. This has led to a proliferation of studies that investigate Error detection and classification in Automatic Speech Recognition (ASR) systems. However, different data sets and evaluation protocols are used, making direct comparisons of the proposed approaches (e.g. features and models) difficult. In this paper we perform an extensive evaluation of the effectiveness and efficiency of state-of-the-art approaches in a unified framework for both errors detection and errors type classification. We make three primary contributions throughout this paper: (1) we have compared our Variant Recurrent Neural Network (V-RNN) model with three other state-of-the-art neural based models, and have shown that the V-RNN model is the most effective classifier for ASR error detection in term of accuracy and speed, (2) we have compared four features’ settings, corresponding to different categories of predictor features and have shown that the generic features are particularly suitable for real-time ASR error detection applications, and (3) we have looked at the post generalization ability of our error detection framework and performed a detailed post detection analysis in order to perceive the recognition errors that are difficult to detect.


Sign in / Sign up

Export Citation Format

Share Document