scholarly journals The Finite Model Theory of Bayesian Networks: Descriptive Complexity

Author(s):  
Fabio Gagliardi Cozman ◽  
Denis Deratani Mauá

We adapt the theory of descriptive complexity to Bayesian networks, to quantify the expressivity of specifications based on predicates and quantifiers. We show that Bayesian network specifications that employ first-order quantification capture the complexity class PP; by allowing quantification over predicates, the resulting Bayesian network specifications capture each class in the hierarchy PP^(NP^...^NP), a result that does not seem to have equivalent in the literature.

Author(s):  
Shawn Hedman

This final chapter unites ideas from both model theory and complexity theory. Finite model theory is the part of model theory that disregards infinite structures. Examples of finite structures naturally arise in computer science in the form of databases, models of computations, and graphs. Instead of satisfiability and validity, finite model theory considers the following finite versions of these properties. • A first-order sentence is finitely satisfiable if it has a finite model. • A first-order sentence is finitely valid if every finite structure is a model. Finite model theory developed separately from the “classical” model theory of previous chapters. Distinct methods and logics are used to analyze finite structures. In Section 10.1, we consider various finite-variable logics that serve as useful languages for finite model theory. We define variations of the pebble games introduced in Section 9.2 to analyze the expressive power of these logics. Pebble games are one of the few tools from classical model theory that is useful for investigating finite structures. In Section 10.2, it is shown that many of the theorems from Chapter 4 are no longer true when restricted to finite models. There is no analog for the Completeness and Compactness theorems in finite model theory. Moreover, we prove Trakhtenbrot’s theorem which states that the set of finitely valid first-order sentences is not recursively enumerable. Descriptive complexity is the subject of 10.3. This subject describes the complexity classes discussed in Chapter 7 in terms of the logics introduced in Chapter 9. We prove Fagin’s theorem relating the class NP to existentional second-order logic. We prove the Cook–Levin theorem as a consequence of Fagin’s Theorem. This theorem states that the Satisfiability Problem for Propositional Logic is NP-complete. We conclude this chapter (and this book) with a section describing the close connection between logic and the P = NP problem. In this section, we discuss appropriate logics for the study of finite models. First-order logic, since it describes each finite model up to isomorphism, is too strong. For this reason, we must weaken the logic. It may seem counter-intuitive that we should gain knowledge by weakening our language.


2002 ◽  
Vol 8 (3) ◽  
pp. 380-403 ◽  
Author(s):  
Eric Rosen

Model theory is concerned mainly, although not exclusively, with infinite structures. In recent years, finite structures have risen to greater prominence, both within the context of mainstream model theory, e.g., in work of Lachlan, Cherlin, Hrushovski, and others, and with the advent of finite model theory, which incorporates elements of classical model theory, combinatorics, and complexity theory. The purpose of this survey is to provide an overview of what might be called the model theory of finite structures. Some topics in finite model theory have strong connections to theoretical computer science, especially descriptive complexity theory (see [26, 46]). In fact, it has been suggested that finite model theory really is, or should be, logic for computer science. These connections with computer science will, however, not be treated here.It is well-known that many classical results of ‘infinite model theory’ fail over the class of finite structures, including the compactness and completeness theorems, as well as many preservation and interpolation theorems (see [35, 26]). The failure of compactness in the finite, in particular, means that the standard proofs of many theorems are no longer valid in this context. At present, there is no known example of a classical theorem that remains true over finite structures, yet must be proved by substantially different methods. It is generally concluded that first-order logic is ‘badly behaved’ over finite structures.From the perspective of expressive power, first-order logic also behaves badly: it is both too weak and too strong. Too weak because many natural properties, such as the size of a structure being even or a graph being connected, cannot be defined by a single sentence. Too strong, because every class of finite structures with a finite signature can be defined by an infinite set of sentences. Even worse, every finite structure is defined up to isomorphism by a single sentence. In fact, it is perhaps because of this last point more than anything else that model theorists have not been very interested in finite structures. Modern model theory is concerned largely with complete first-order theories, which are completely trivial here.


1998 ◽  
Vol 4 (4) ◽  
pp. 345-398 ◽  
Author(s):  
Martin Grohe

Throughout the development of finite model theory, the fragments of first-order logic with only finitely many variables have played a central role. This survey gives an introduction to the theory of finite variable logics and reports on recent progress in the area.For each k ≥ 1 we let Lk be the fragment of first-order logic consisting of all formulas with at most k (free or bound) variables. The logics Lk are the simplest finite-variable logics. Later, we are going to consider infinitary variants and extensions by so-called counting quantifiers.Finite variable logics have mostly been studied on finite structures. Like the whole area of finite model theory, they have interesting model theoretic, complexity theoretic, and combinatorial aspects. For finite structures, first-order logic is often too expressive, since each finite structure can be characterized up to isomorphism by a single first-order sentence, and each class of finite structures that is closed under isomorphism can be characterized by a first-order theory. The finite variable fragments seem to be promising candidates with the right balance between expressive power and weakness for a model theory of finite structures. This may have motivated Poizat [67] to collect some basic model theoretic properties of the Lk. Around the same time Immerman [45] showed that important complexity classes such as polynomial time (PTIME) or polynomial space (PSPACE) can be characterized as collections of all classes of (ordered) finite structures definable by uniform sequences of first-order formulas with a fixed number of variables and varying quantifier-depth.


1996 ◽  
Vol 2 (4) ◽  
pp. 422-443 ◽  
Author(s):  
Lauri Hella ◽  
Phokion G. Kolaitis ◽  
Kerkko Luosto

AbstractWe introduce a new framework for classifying logics on finite structures and studying their expressive power. This framework is based on the concept of almost everywhere equivalence of logics, that is to say, two logics having the same expressive power on a class of asymptotic measure 1. More precisely, if L, L′ are two logics and μ is an asymptotic measure on finite structures, then L ≡a.e.L′ (μ) means that there is a class C of finite structures with μ(C) = 1 and such that L and L′ define the same queries on C. We carry out a systematic investigation of ≡a.e. with respect to the uniform measure and analyze the ≡a.e.-equivalence classes of several logics that have been studied extensively in finite model theory. Moreover, we explore connections with descriptive complexity theory and examine the status of certain classical results of model theory in the context of this new framework.


Author(s):  
Heinz-Dieter Ebbinghaus ◽  
Jörg Flum

Author(s):  
Heinz-Dieter Ebbinghaus ◽  
Jörg Flum

2004 ◽  
Vol 69 (4) ◽  
pp. 1105-1116 ◽  
Author(s):  
Leszek Aleksander Kołodziejczyk

Abstract.We use finite model theory (in particular, the method of FM-truth definitions, introduced in [MM01] and developed in [K04], and a normal form result akin to those of [Ste93] and [G97]) to prove:Let m ≥ 2. Then:(A) If there exists k such that NP⊆ Σm TIME(nk)∩ Πm TIME(nk), then for every r there exists kr such that :(B) If there exists a superpolynomial time-constructible function f such that NTIME(f), then additionally .This strengthens a result by Mocas [M96] that for any r, .In addition, we use FM-truth definitions to give a simple sufficient condition for the arity hierarchy to be strict over finite models.


Sign in / Sign up

Export Citation Format

Share Document