scholarly journals Compositional Neural Logic Programming

Author(s):  
Son N. Tran

This paper introduces Compositional Neural Logic Programming (CNLP), a framework that integrates neural networks and logic programming for symbolic and sub-symbolic reasoning. We adopt the idea of compositional neural networks to represent first-order logic predicates and rules. A voting backward-forward chaining algorithm is proposed for inference with both symbolic and sub-symbolic variables in an argument-retrieval style. The framework is highly flexible in that it can be constructed incrementally with new knowledge, and it also supports batch reasoning in certain cases. In the experiments, we demonstrate the advantages of CNLP in discriminative tasks and generative tasks.

2011 ◽  
pp. 24-43
Author(s):  
J. Bruijn

This chapter introduces a number of formal logical languages which form the backbone of the Semantic Web. They are used for the representation of both ontologies and rules. The basis for all languages presented in this chapter is the classical first-order logic. Description logics is a family of languages which represent subsets of first-order logic. Expressive description logic languages form the basis for popular ontology languages on the Semantic Web. Logic programming is based on a subset of first-order logic, namely Horn logic, but uses a slightly different semantics and can be extended with non-monotonic negation. Many Semantic Web reasoners are based on logic programming principles and rule languages for the Semantic Web based on logic programming are an ongoing discussion. Frame Logic allows object-oriented style (frame-based) modeling in a logical language. RuleML is an XML-based syntax consisting of different sublanguages for the exchange of specifications in different logical languages over the Web.


2011 ◽  
Vol 76 (2) ◽  
pp. 673-699 ◽  
Author(s):  
Michael Gabbay

AbstractWe build on an existing a term-sequent logic for the λ-calculus. We formulate a general sequent system that fully integrates αβη-reductions between untyped λ-terms into first order logic.We prove a cut-elimination result and then offer an application of cut-elimination by giving a notion of uniform proof for λ-terms. We suggest how this allows us to view the calculus of untyped αβ-reductions as a logic programming language (as well as a functional programming language, as it is traditionally seen).


Author(s):  
Bernd Meyer ◽  
Paolo Bottoni

In this paper we investigate a new approach to formalizing interpretation of and reasoning with visual languages based on linear logic. We argue that an approach based on logic makes it possible to deal with different computational tasks in the usage of visual notations, from parsing and animation to reasoning about diagrams. However, classical first order logic, being monotonic, is not a suitable basis for such an approach. The paper therefore explores linear logic as an alternative. We demonstrate how parsing corresponds to linear proofs and prove the soundness and correctness of this mapping. As our mapping of grammars is into a subset of a linear logic programming language, we also demonstrate how multi-dimensional parsing can be understood as automated linear deduction. We proceed to discuss how the same framework can be used as the foundation of more complex forms of reasoning with and about diagrams.


Author(s):  
Donald W. Loveland ◽  
Gopalan Nadathur

A proof procedure is an algorithm (technically, a semi-decision procedure) which identifies a formula as valid (or unsatisfiable) when appropriate, and may not terminate when the formula is invalid (satisfiable). Since a proof procedure concerns a logic the procedure takes a special form, superimposing a search strategy on an inference calculus. We will consider a certain collection of proof procedures in the light of an inference calculus format that abstracts the concept of logic programming. This formulation allows us to look beyond SLD-resolution, the proof procedure that underlies Prolog, to generalizations and extensions that retain an essence of logic programming structure. The inference structure used in the formulation of the logic programming concept and first realization, Prolog, evolved from the work done in the subdiscipline called automated theorem proving. While many proof procedures have been developed within this subdiscipline, some of which appear in Volume 1 of this handbook, we will present a narrow selection, namely the proof procedures which are clearly ancestors of the first proof procedure associated with logic programming, SLD-resolution. Extensive treatment of proof procedures for automated theorem proving appear in Bibel [Bibel, 1982], Chang and Lee [Chang and Lee, 1973] and Loveland [Loveland, 1978]. Although the consideration of proof procedures for automated theorem proving began about 1958 we begin our overview with the introduction of the resolution proof procedure by Robinson in 1965. We then review the linear resolution procedures, model elimination and SL-resolution procedures. Our exclusion of other proof procedures from consideration here is due to our focus, not because other procedures are less important historically or for general use within automated or semi-automated theorem process. After a review of the general resolution proof procedure, we consider the linear refinement for resolution and then further restrict the procedure format to linear input resolution. Here we are no longer capable of treating full first-order logic, but have forced ourselves to address a smaller domain, in essence the renameable Horn clause formulas. By leaving the resolution format, indeed leaving traditional formula representation, we see there exists a linear input procedure for all of first-order logic.


Author(s):  
J. J. Moreno Navarro ◽  
M. Rodriguez Artalejo

In this chapter, the nature of the process that each participant engages in individually in order to contribute to collective reasoning is discussed. The design of technological systems that will best support reasoning in its communal context requires the specification of schemes for representing knowledge and for the inference of new knowledge. Further, it is also necessary to articulate a model for the process that individuals engage in when reasoning in groups. The assertion we make is that the process iteratively includes phases of engagement, individual reasoning, group coalescing, until decision making. Representations, including the classical syllogism, first order logic, default reasoning, deontic reasoning, and argumentation schemes, are surveyed to illustrate their strengths and limitations to represent individual reasoning.


Sign in / Sign up

Export Citation Format

Share Document