sequent system
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Gabriele Pulcini

AbstractIn Schwichtenberg (Studies in logic and the foundations of mathematics, vol 90, Elsevier, pp 867–895, 1977), Schwichtenberg fine-tuned Tait’s technique (Tait in The syntax and semantics of infinitary languages, Springer, pp 204–236, 1968) so as to provide a simplified version of Gentzen’s original cut-elimination procedure for first-order classical logic (Gallier in Logic for computer science: foundations of automatic theorem proving, Courier Dover Publications, London, 2015). In this note we show that, limited to the case of classical propositional logic, the Tait–Schwichtenberg algorithm allows for a further simplification. The procedure offered here is implemented on Kleene’s sequent system G4 (Kleene in Mathematical logic, Wiley, New York, 1967; Smullyan in First-order logic, Courier corporation, London, 1995). The specific formulation of the logical rules for G4 allows us to provide bounds on the height of cut-free proofs just in terms of the logical complexity of their end-sequent.


Author(s):  
Katsumi Sasaki

In the natural deduction system for classical propositional logic given by G. Gentzen, there are some inference rules with assumptions discharged by the rule. D. Prawitz calls such inference rules improper, and others proper. Improper inference rules are more complicated and are often harder to understand than the proper ones. In the present paper, we distinguish between proper and improper derivations by using sequent systems. Specifically, we introduce a sequent system \(\vdash_{\bf Sc}\) for classical propositional logic with only structural rules, and prove that \(\vdash_{\bf Sc}\) does not allow improper derivations in general. For instance, the sequent \(\Rightarrow p \to q\) cannot be derived from the sequent \(p \Rightarrow q\) in \(\vdash_{\bf Sc}\). In order to prove the failure of improper derivations, we modify the usual notion of truth valuation, and using the modified valuation, we prove the completeness of \(\vdash_{\bf Sc}\). We also consider whether an improper derivation can be described generally by using \(\vdash_{\bf Sc}\).


Author(s):  
Damian E. Szmuc

We examine the set of formula-to-formula valid inferences of Classical Logic, where the premise and the conclusion share at least a propositional variable in common. We review the fact, already proved in the literature, that such a system is identical to the first-degree entailment fragment of R. Epstein's Relatedness Logic, and that it is a non-transitive logic of the sort investigated by S. Frankowski and others. Furthermore, we provide a semantics and a calculus for this logic. The semantics is defined in terms of a \(p\)-matrix built on top of a 5-valued extension of the 3-element weak Kleene algebra, whereas the calculus is defined in terms of a Gentzen-style sequent system where the left and right negation rules are subject to linguistic constraints.


Author(s):  
Paweł Płaczek

Bilinear Logic of Lambek [10] amounts to Noncommutative MALL of Abrusci [1]. Lambek [10] proves the cut–elimination theorem for a onesided (in fact, left-sided) sequent system for this logic. Here we prove an analogous result for the nonassociative version of this logic. Like Lambek [10], we consider a left-sided system, but the result also holds for its right-sided version, by a natural symmetry. The treatment of nonassociative sequent systems involves some subtleties, not appearing in associative logics. We also prove the PTIME complexity of the multiplicative fragment of NBL.


2020 ◽  
Author(s):  
Mirjana Borisavljević

Abstract In derivations of a sequent system, $\mathcal{L}\mathcal{J}$, and a natural deduction system, $\mathcal{N}\mathcal{J}$, the trails of formulae and the subformula property based on these trails will be defined. The derivations of $\mathcal{N}\mathcal{J}$ and $\mathcal{L}\mathcal{J}$ will be connected by the map $g$, and it will be proved the following: an $\mathcal{N}\mathcal{J}$-derivation is normal $\Longleftrightarrow $ it has the subformula property based on trails $\Longleftrightarrow $ its $g$-image in $\mathcal{L}\mathcal{J}$ is without maximum cuts $\Longrightarrow $ that $g$-image has the subformula property based on trails. In $\mathcal{L}\mathcal{J}$-derivations, another type of cuts, sub-cuts, will be introduced, and it will be proved the following: all cuts of an $\mathcal{L}\mathcal{J}$-derivation are sub-cuts $\Longleftrightarrow $ it has the subformula property based on trails.


2020 ◽  
Vol 17 (2) ◽  
pp. 110
Author(s):  
Tomasz Kowalski
Keyword(s):  

A sequent system is used to give alternative proofs of two well known properties of free lattices: Whitman’s condition and semidistributivity. It demonstrates usefulness of such proof systems outside logic.


2020 ◽  
Author(s):  
Mirjana Ilić ◽  
Branislav Boričić

Abstract In Ilić and Boričić (2014, Log. J. IGPL, 22, 673–695), the right-handed cut-free sequent calculus $GRW$ for the contraction-less relevant logic $RW$ is defined. In this paper, we show that the enlargement of the system $GRW$ with the structural rule of intensional contraction (WI) presents the sequent system for the principal relevant logic $R$ but the rule of cut cannot be eliminated in $GRW+$(WI).


2017 ◽  
Vol 46 (1/2) ◽  
Author(s):  
Wojciech Buszkowski

In [5] we study Nonassociative Lambek Calculus (NL) augmented with De Morgan negation, satisfying the double negation and contraposition laws. This logic, introduced by de Grooté and Lamarche [10], is called Classical Non-Associative Lambek Calculus (CNL). Here we study a weaker logic InNL, i.e. NL with two involutive negations. We present a one-sided sequent system for InNL, admitting cut elimination. We also prove that InNL is PTIME.


Sign in / Sign up

Export Citation Format

Share Document