scholarly journals Why Functional Non-Invasive Near-Infrared Spectroscopy Coupled With 31P-Nuclear Magnetic Resonance Spectroscopy Should Be Used To Predict, Diagnose And Manage Substance Abuse-Induced Strokes And Deaths: A Personal Perspective

2020 ◽  
Vol 7 (1) ◽  
pp. 1-7
Author(s):  
Burton M Altura ◽  
1994 ◽  
Vol 77 (1) ◽  
pp. 5-10 ◽  
Author(s):  
K. K. McCully ◽  
S. Iotti ◽  
K. Kendrick ◽  
Z. Wang ◽  
J. D. Posner ◽  
...  

Simultaneous measurements of phosphocreatine (PCr) and oxyhemoglobin (HbO2) saturation were made during recovery from exercise in calf muscles of five male subjects. PCr was measured using magnetic resonance spectroscopy in a 2.0-T 78-cm-bore magnet with a 9-cm-diam surface coil. Relative HbO2 saturation was measured as the difference in absorption of 750- and 850-nm light with use of near-infrared spectroscopy. The light source and detectors were 3 cm apart. Exercise consisted of isokinetic plantar flexion in a supine position. Two 5-min submaximal protocols were performed with PCr depletion to 60% of resting values and with pH values of > 7.0. Then two 1-min protocols of rapid plantar flexion were performed to deplete PCr values to 5–20% of resting values with pH values of < 6.8. Areas of PCr peaks (every 8 s) and HbO2 saturation (every 1 s) were fit to a monoexponential function, and a time constant was calculated. The PCr time constant was larger after maximal exercise (68.3 +/- 10.5 s) than after submaximal exercise (36.0 +/- 6.5 s), which is consistent with the effects of low pH on PCr recovery. HbO2 resaturation approximated submaximal PCr recovery and was not different between maximal (29.4 +/- 5.5 s) and submaximal (27.6 +/- 6.0 s) exercise. We conclude that magnetic resonance spectroscopy measurements of PCr recovery and near-infrared spectroscopy measurements of recovery of HbO2 saturation provide similar information as long as muscle pH remains near 7.0.


2012 ◽  
Vol 9 (72) ◽  
pp. 1499-1509 ◽  
Author(s):  
Tracy Moroz ◽  
Murad Banaji ◽  
Nicola J. Robertson ◽  
Chris E. Cooper ◽  
Ilias Tachtsidis

We describe a computational model to simulate measurements from near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS) in the piglet brain. Piglets are often subjected to anoxic, hypoxic and ischaemic insults, as experimental models for human neonates. The model aims to help interpret measurements and increase understanding of physiological processes occurring during such insults. It is an extension of a previous model of circulation and mitochondrial metabolism. This was developed to predict NIRS measurements in the brains of healthy adults i.e. concentration changes of oxyhaemoglobin and deoxyhaemoglobin and redox state changes of cytochrome c oxidase (CCO). We altered and enhanced the model to apply to the anaesthetized piglet brain. It now includes metabolites measured by 31 P-MRS, namely phosphocreatine, inorganic phosphate and adenosine triphosphate (ATP). It also includes simple descriptions of glycolysis, lactate dynamics and the tricarboxylic acid (TCA) cycle. The model is described, and its simulations compared with existing measurements from piglets during anoxia. The NIRS and MRS measurements are predicted well, although this requires a reduction in blood pressure autoregulation. Predictions of the cerebral metabolic rate of oxygen consumption (CMRO 2 ) and lactate concentration, which were not measured, are given. Finally, the model is used to investigate hypotheses regarding changes in CCO redox state during anoxia.


Sign in / Sign up

Export Citation Format

Share Document