scholarly journals Formulation and Evaluation of Nateglinide Sustained Release Tablets

Author(s):  
Sridevi Gowripattapu ◽  
S. Latha

The objective of the present investigation was to design suitable sustained release tablet formulation of Nateglinide by using different polymers such as hydroxy propyl methyl cellulose K15M, xanthan gum, guar gum as release rate retarding polymers. The tablets were prepared by direct compression technique. Nateglinide is used as anti diabetic drug. The objective of the treatment is to achieve hypoglycemia, by using an ideal dosage regimen. The sustained release formulation provides extend duration of action in therapeutic range without reaching toxic levels as in the case of conventional dosage forms. The real formulation trails are carried from F1 to F9 in which Drug: Polymer ratio was set as 1:9 respectively. The prepared formulations F1 to F9 were evaluated for pre and post compression characteristics, along with the in vitro dissolution Studies. It was found that the release of drug from F1, F2, and F3 gave the better release than other formulations. In these three formulations F2 showing highest release following first order kinetics. From the Higuchi plot good correlation coefficient was observed showing diffusion mechanism. From the peppas plot it was observed that the release model was non fickian anomalous. The release rate was decreased as polymer concentration increased so it shows that increase in diffusion length of polymer decreases the release rate.

2019 ◽  
Vol 9 (4-A) ◽  
pp. 79-85
Author(s):  
Elangovan Nagarajan ◽  
B Rama ◽  
M Swetha ◽  
G.S Sharma ◽  
L Jyothi Rani ◽  
...  

In the present work, double walled microspheres of Tamoxifen (antiestrogenic drug) using Sodium alginate, Hydroxy propyl methyl cellulose (HPMC) K100,Guar gum, Xanthun gum were formulated to deliver Tamoxifen (TMX) through  oral route to treat breast cancer patients. Details regarding the preparation and evaluation of the formulations have been discussed in results. From the study following conclusions could be drawn. The results of this investigation indicate that Ion gelation method can be successfully employed to fabricate TMX microspheres. FT-IR spectra of the physical mixture revealed that the drug is compatible with the polymers and copolymer used. Microspheres containing sodium alginate along with HPMC in 1:1 ratio had a least size range of 610µm. Increase in the polymer concentration led to increase in % Yield, % Drug entrapment efficiency, Particle size. The  invitro drug release decreased with increase in the polymer and copolymer concentration. Among all formulations F7 shows Maximum drug release in 12 th hr  when compared with other formulations. Analysis of drug release mechanism showed that the drug release from the formulations followed the Non fickian diffusion mechanism and follows zero order kinectics. Based on the results of evaluation tests formulation coded F7 was concluded as best formulation. Keywords : Tamoxifen, sodium alginate, HPMC, Microspheres, Diffusion, Copolymers,  Entrapment efficiency.


2013 ◽  
Vol 11 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Monnujan Nargis ◽  
Md Saiful Islam ◽  
Fatima Naushin ◽  
Syed Shabbir Haider

Sustained release formulations of metoclopramide HCl (4-amino-5-chloro-N-(2-diethylaminoethyl)-2- methoxybenzamide hydrochloride) (MH) were prepared using carnauba wax (CW) and stearic acid (SA) as matrix formers. Granules were prepared by melt granulation method while direct compression technique was used to prepare the tablets. The drug release profiles of these products were studied by in-vitro dissolution testing in simulated gastric, gastrointestinal and intestinal media of pH 1.2, 4.5 and 7.5, respectively. The increase in the proportion of SA in the granules produced a concomitant decrease of the initial drug release rate but later on the release rate was enhanced in the intestinal medium. Drug release was found to be affected by compression force and stirring rate but also showed a dependency on pH of the dissolution fluid. The fastest release rate was found at pH 4.5 and the slowest at pH 1.2 which was consistent with the drug’s solubility behavior. Matrix erosion and water uptake rates were highest in the intestinal medium and lowest in the gastric medium. The drug release kinetics followed the Higuchi’s model in all cases. DOI: http://dx.doi.org/10.3329/dujps.v11i2.14563 Dhaka Univ. J. Pharm. Sci. 11(2): 129-136, 2012 (December)


1970 ◽  
Vol 7 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Md Abu Hena Mostafa Kamal ◽  
Maruf Ahmed ◽  
Mir Imam Ibne Wahed ◽  
Md Shah Amran ◽  
Sharif Md Shaheen ◽  
...  

Indomethacin (IM) sustained release microcapsules were successfully prepared using ethyl cellulose (EC) and hydroxy propyl methyl cellulose phthalate (HPMCP) by o/w emulsification-solvent evaporation technique. The prepared microcapsules were evaluated for size, shape, drug content and in vitro drug release. The microcapsules show sustained release curves at pH 7.2 phosphate buffer for up to 6 h. The data obtained from the dissolution profiles were compared in the light of different kinetics models and the regression coefficients were compared. The in vitro dissolution study confirmed the Higuchi-order release pattern. Particle size and release data analysis from five consecutive batches prepared in the laboratory indicated suitable reproducibility of the solvent evaporation process. The release rate increased exponentially with the addition of HPMCP in EC. IM release rate was observed highest with the highest concentration of HPMCP (3:7 ratio of EC:HPMCP), used in the present studies. On the other hand, IM release rate was lowest when EC and HPMCP combination was used at the ratio of 10:0. When percent of HPMCP was increased, the particle size of microcapsules was decreased. Key words: Indomethacin, sustained release, microcapsule, HPMCP, EC, Higuchi-order  DOI = 10.3329/dujps.v7i1.1223 Dhaka Univ. J. Pharm. Sci. 7(1): 83-88, 2008 (June)


Author(s):  
RAJESWARI ALETI ◽  
SRINIVASA RAO BARATAM ◽  
BANGARUTHALLI JAGIRAPU ◽  
SRAVYA KUDAMALA

Objective: The main objective of the present investigation is to develop a sustained-release (SR) formulation to optimize the postprandial elevation of glucose level in type 2 Diabetic subjects using combination therapy. In the present research work, bilayer sustained release formulation of metformin hydrochloride (MFH) and gliclazide (GLZ), based on monolithic-matrix technology was developed and evaluated. Methods: The formulations of metformin hydrochloride layer and gliclazide layer that contain polyox WSR coagulant and different viscosity grades of hydroxyl propyl methylcellulose (HPMC) as sustained-release matrix were prepared by direct compression and wet granulation method respectively. The bilayer tablets were prepared after carrying out the optimization of metformin layer and evaluated for various pre-compression and post-compression parameters. For the best formulation selected on basis of in vitro evaluation of tablets, Fourier-transform infrared spectroscopy (FT-IR) studies and comparison of in vitro dissolution profile of developed formulation with the innovator were performed. Results: Metformin hydrochloride and gliclazide showed sustained release of drug by diffusion mechanism and followed first-order kinetics. The best formulation of metformin hydrochloride (M7) and gliclazide (G8) show 99.93% and 99.65% of drug release in 24 h respectively. The similarity factor (f2) was 79.95 for metformin hydrochloride and 73.62 for gliclazide when compared with the innovator. Conclusion: The monolith diffusion-controlled bilayer tablets of metformin hydrochloride and gliclazide offer improved patient compliance and convenience with better postprandial hyperglycemic control with once-a-day dosing. The sustained release of the drug up to 24 h regulate antidiabetic activity round the clock with minimal side effects.


2018 ◽  
Vol 16 (1) ◽  
pp. 333-339
Author(s):  
Wanying Liu ◽  
Qing Huo ◽  
Yue Wang ◽  
Na Yu ◽  
Rongjian Shi

AbstractIn this study, we investigate the production of hypolipidemic agents in the form of Acipimox sustained-release tablets, using a wet pelleting process. The purpose of this research is to reduce the total intake time for patients and to lower the initial dose in such that the adverse reactions could be reduced. This study adopts the single-factor method and orthogonal experiments by using hydroxypropyl methyl cellulose (HPMC K15M) as the main sustained-release prescription composition. The final prescription is Acipimox 20%, HPMC K15M 26.67%, sodium carboxymethyl cellulose 30%, polyethylene glycol (PEG 6000) 1%, ethyl cellulose 16.6%, lactose 4.67% and magnesium stearate 1%. The dissolution of tablets reached 85.88% in 8 h. The difference in the weight, hardness and friability of the tables met the requirements in the Chinese Pharmacopoeia; to test the stability, a temperature and illumination accelerated test method was used, the results indicate that the Acipimox sustained-release tablets should be sealed and stored in a dark, cool area. A preliminary study on the tablets’ releasing mechanism showed that their release curve fitted the Higuchi model (the formula is Mt/M∞ = 31.137 t1/2–3.605 (R2 = 0.9903)). The Acipimox tablets’ release principle is dominated by the diffusion mechanism.


2019 ◽  
Vol 9 (4) ◽  
pp. 574-578
Author(s):  
Mohammad Faizan Mohammad Gufran ◽  
Sailesh Kumar Ghatuary ◽  
Reena Shende ◽  
Prabhat Kumar Jain ◽  
Geeta Parkhe

Formulation development is an important part of drug design and development. Bioavailability and bioequivalence are totally dependent on formulation development. Now-a-days formulation development is done by following QbD (Quality by Design).The aim of present study is to formulate Gemfibrozil (Gem) sustained release (SR) and immediate release (IR) bilayer tablet by different concentration of Hydroxypropyl methylcellulose (HPMC) and HPMC K 100 M to control the release pattern. The sustained release layer of Gem was prepared by using different grades of HPMC like, HPMC K-15, HPMC K-4 along with other excipients by direct compression technique. The immediate release layer of Gem was prepared by Cross carmellose sodium, Crospovidone and Sodium starch glycolate by direct compression technique. The powders were evaluated for their flow properties and the finished tablets were evaluated for their physical parameters. The both immediate release and sustained release layers of Gem were characterized by FT-IR and in vitro dissolution studies. The drug release study of Gem was evaluated using USP-II paddle type dissolution apparatus. The release rate of Gem in immediate release layer was studied for 15 min in 0.1 N HCL media and that of Gem in sustained release layer was studied for 12 h in 0.1 N HCL. From the nine batches F6 batch showed good release behaviour 99.85% of drug is released over 12 hours. Gem belongs to BCS Class II (log P 3.6) with poor solubility and high permeability resulting in limited and variable bioavailability. Total four trial batches of each drug have been manufactured to optimize and develop a robust and stable formulation, the stability studies of the products also comply with ICH guideline. Keywords: Bilayer floating tablets, Gemfibrozil, Biphasic drug release, HPMC K 15.


Author(s):  
S Shanmugam

Objective: The objective of the present study was to develop sustained release matrix tablets of levosulpiride by using natural polymers.Method: The tablets were prepared with different ratios of Chitosan, Xanthan gum and Guar gum by wet granulation technique. The solubility study of the levosulpiride was conducted to select a suitable dissolution media for in vitro drug release studies.Results: Fourier transform infrared (FTIR) study revealed no considerable changes in IR peak of levosulpiride and hence no interaction between drug and the excipients. DSC thermograms showed that no drug interaction occurred during the manufacturing process. In vitro dissolution study was carried out for all the formulation and the results compared with marketed sustained release tablet. The drug release from matrix tablets was found to decrease with increase in polymer ratio of Chitosan, Xanthan gum and Guar gum.Conclusion: Formulation LF3 exhibited almost similar drug release profile in dissolution media as that of marketed tablets. From the results of dissolution data fitted to various drug release kinetic equations, it was observed that highest correlation was found for First order, Higuchi’s and Korsmeyer equation, which indicate that the drug release occurred via diffusion mechanism.  Keywords: Levosulpiride, sustained release tablets, natural polymers, in vitro drug release studies 


2015 ◽  
Vol 18 (2) ◽  
pp. 157-162
Author(s):  
Samira Karim ◽  
Mohiuddin Ahmed Bhuiyan ◽  
Md Sohel Rana

This work aims at the design of a sustained release formulation of glimepiride which is currently available in the treatment of type 2 diabetes mellitus and to investigate the effect of polymers on the release profile of glimepiride. Glimepiride sustained release tablets were prepared by direct compression method using different ratios of various release retarding polymers such as carbopol, ethyl cellulose, methocel K4 MCR, methocel K15 MCR, methocel K100 MCR and xanthum gum. These formulations were also compared with glimepiride immediate release tablets. The prepared tablets were subjected to various physical parameter tests including weight variation, friability, hardness, thickness, diameter, etc. In vitro dissolution studies of the formulations were done at pH 6.8 in phosphate buffer using USP apparatus 2 (paddle method) at 50 rpm. The percent releases of all the formulations (30) were 73.11%- 98.76% after 8 hours. The release pattern followed zero order kinetics and the release of the drug was hindered by the polymers used in the study. On the other hand, 100% drug was released within 1 hour from the immediate release tablet of glimepiride. The study reveals that the polymers used have the capacity to retard the release of the drug from the sustained release tablets and the more is the amount of the polymer in the formulation the less is the release of drug showing more retardation of drug release.Bangladesh Pharmaceutical Journal 18(2): 157-162, 2015


Author(s):  
Pavani S ◽  
Mounika K ◽  
Naresh K

The present study is to formulate and evaluate Acyclovir (ACV) microspheres using natural polymers like chitosan and sodium alginate. ACV is a DNA polymerase inhibitor used in treating herpes simplex virus infection and zoster varicella infections. Acyclovir is a suitable candidate for sustained-release (SR) administration as a result of its dosage regimen twice or thrice a day and relatively short plasma half-life (approximately 2 to 4 hours). Microspheres of ACV were prepared by an ionic dilution method using chitosan and sodium alginate as polymers. The prepared ACV microspheres were then subjected to FTIR, SEM, particle size, % yield, entrapment efficiency, in vitro dissolution studies and release kinetics mechanism. The FTIR spectra’s revealed that, there was no interaction between polymer and ACV. ACV microspheres were spherical in nature, which was confirmed by SEM. The particle size of microspheres was in the range of 23.8µm to 39.4µm. 72.9% drug entrapment efficiency was obtained in the formulation F3 (1:3 ratio) with a high concentration of calcium chloride (4% w/v). The in vitro performance of ACV microspheres showed sustained release depending on the polymer concentration and concentration of calcium chloride.   The release data was best fitted with zero order kinetics and Korsemeyer -Peppas release mechanism and diffusion exponent ‘n’ value of was found to be Non-Fickian.


2021 ◽  
Vol 11 (2) ◽  
pp. 31-37
Author(s):  
Mehak Siddiqui ◽  
L. K. Omray ◽  
Pushpendra Soni

The overall objective of the present work was to develop an oral sustained-release (SR) Metformin tablet that is prepared by the direct compression method by using hydrophilic hydroxyl propyl methyl cellulose (HPMC) and Guar gum polymer alone as well as in combination at different concentrations. Metformin is a biguanide that has a relatively short plasma half-life. It has low absolute bioavailability. All the properties were evaluated for thickness, weight variation, hardness and drug content uniformity and in vitro drug release. The mean dissolution time is used to characterize the drug release rate from a dosage form that indicates the drug release-retarding efficiency of the polymer. The hydrophilic matrix of HPMC alone could not control the Metformin release effectively for 12 h but when combined with Guar gum, it could slow down the release of drug and, thus, can be successfully employed for formulating Sustain Release matrix tablets. Keywords: Guar gum, hydroxylpropylmethylcellulose, matrix tablets, release kinetics,


Sign in / Sign up

Export Citation Format

Share Document