scholarly journals Sepsis, mitochondrial failure and multiple organ dysfunction

2014 ◽  
Vol 37 (2) ◽  
pp. 58 ◽  
Author(s):  
Josefina Duran-Bedolla ◽  
Marco A Montes de Oca-Sandoval ◽  
Vianey Saldaña-Navor ◽  
José A Villalobos-Silva ◽  
Maria Carmen Rodriguez ◽  
...  

Purpose: The purpose of this review is to consider the state of oxidative stress, failure of the antioxidant systems and mitochondrial failure as the main physiopathological mechanisms leading to multiple organ dysfunction during sepsis. Principal findings: Sepsis is a clinical syndrome caused by a severe infection that triggers an exaggerated inflammatory response. Involved in the pathogenesis of sepsis are the activation of inflammatory, immune, hormonal, metabolic and bioenergetic responses. One of the pivotal factors in these processes is the increase of reactive species accompanied by the failure of the antioxidant systems, leading to a state of irreversible oxidative stress and mitochondrial failure. In a physiological state, reactive species and antioxidant systems are in redox balance. The loss of this balance during both chronic and infectious diseases leads to a state of oxidative stress, which is considered to be the greatest promoter of a systemic inflammatory response. The loss of the redox balance, together with a systemic inflammatory response during sepsis, can lead to progressive and irreversible mitochondrial failure, energy depletion, hypoxia, septic shock, severe sepsis, multiple organ dysfunction and death of the patient. Conclusion: Knowledge of the molecular processes associated with the development of oxidative stress should facilitate the development of effective therapies and better prognosis for patients with sepsis and organ dysfunction.

2012 ◽  
Vol 78 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Donald E. Fry

Human sepsis is thought to be systemic inflammatory response syndrome (SIRS) that is activated by invasive infection. The multiple organ dysfunction syndrome (MODS) is the identified failure of critical organ function in patients that have sustained SIRS. Because SIRS and MODS are consequences of the excessive activation of inflammation, extensive research and numerous clinical trials have pursued treatments that would modify the inflammatory response. This presentation reviews the normal local mechanisms of inflammation and provides a theoretical framework for the transition of the inflammatory process to a systemic level. Clinical trials with biomodulators to block or inhibit inflammation have generally failed to improve the outcomes in patients with severe sepsis, septic shock, and MODS. The role of counter-inflammatory signaling and the newer concept of the cholinergic anti-inflammatory pathway are being investigated, and newer hypotheses are focusing upon the balancing of proinflammatory and counter-inflammatory mechanisms as important directions for newer therapies. It is concluded that failure to define novel and effective treatments reflects fundamental gaps in our understanding of inflammation and its regulation.


Sign in / Sign up

Export Citation Format

Share Document