scholarly journals A Study to Assess the Effectiveness of Constructed Wetland Technology for Polluted Surface Water Treatment

Author(s):  
Nguyen Cong Manh ◽  
Phan Van Minh ◽  
Nguyen Tri Quang Hung ◽  
Phan Thai Son ◽  
Nguyen Minh Ky

Abstract: The study aims to assess the applying effectiveness of constructed wetland technology for polluted surface water treatment. The experimental models were operated with 2 hydraulic loadings of 500mL/min/m2 (T1) and 1500mL/min/m2 (T2). The reed grass (Phragmites australis) was selected for the studying process. The surface water resource was removed from the pollutant components (TSS, BOD5, COD) and harmful microorganisms (fecal coliform) which aim to protect the water quality and aquatic ecosystems. The results showed the treatment effectiveness of loading of 500mL/min/m2 is higher than the loading of 1500mL/min/m2, especially in the reed planting trial. In particular, the treatment efficiency of pollutants such as TSS, BOD5, COD reached a high rate of 85%, 90%, and 87%, respectively. In addition, ANOVA statistical analysis showed the effectiveness of water quality parameters belong to two loadings were statistically significant (P<0.05). Thus, the surface water pollutant removal by subsurface vertical flow constructed wetland technology could be contributed to promoting the sustainable agricultural development. Keywords: Constructed wetland, removal, surface water, Phragmites australis, pollution. References: [1] Z. ElZein, A. Abdou, I.A. ElGawad, Constructed Wetlands as a Sustainable Wastewater Treatment Method in Communities, Procedia Environmental Sciences, 34 (2016) 605-617. https://doi.org/10. 1016/j.proenv.2016.04.053. [2] R.H. Kadlec, S.D. Wallace, Treatment Wetlands, CRC Press/Lewis Pucblishers, Boca Raton, FL, 2009.[3] J. Vymazal, Constructed Wetlands for Wastewater Treatment, Water, 2(3) (2010) 530-549. https://doi. org/10.3390/w2030530. [4] L. Volker, E. Elke, L.W. Martina, L. Andreas, M.G. Richard, Nutrient Removal Efficiency and Resource Economics of Vertical Flow and Horizontal Flow Constructed Wetlands, Ecological Engineering, 18(2) (2001) 157-171. https://doi.org/ 10.1016/S0925-8574(01)00075-1. [5] M. Ilda, F. Daniel, P. Enrico, F. Laura, M. Erika, Z. Gabriele, A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems, Environmental Management, 41(1) (2007) 118-129. https://doi.org /10.1007/s00267-007-9001-6. [6] J. Vymazal, The use of constructed wetlands with horizontal sub-surface flow for various types of wastewater, Ecological Engineering, 35 (2009) 1-17. https://doi.org/10.1016/j.ecoleng.2008.08.016. [7] S. Katarzyna, H.G. Magdalena, The use of constructed wetlands for the treatment of industrial wastewater, Journal of Water and Land Development, 34 (2017) 233–240. https://doi.org /10.1515/jwld-2017-0058. [8] S. Dallas, B. Scheffe, G. Ho, Reedbeds for greywater treatment-case study in Santa Elena-Monteverde, Costa Rica, Central America. Ecol. Eng. 23 (2004) 55-61. https://doi.org/10.1016/ j.ecoleng.2004.07.002. [9] Tổng cục Thống kê, Niên giám thống kê Việt Nam, NXB Thống kê, Hà Nội, 2018.[10] Bộ Tài nguyên và Môi trường, Báo cáo hiện trạng môi trường quốc gia – Môi trường nước mặt, Hà Nội, 2012.[11] UBND tỉnh Bình Dương, Quyết định số 3613/QĐ-UBND về việc Quy hoạch tài nguyên nước tỉnh Bình Dương giai đoạn 2016 - 2025, tầm nhìn đến năm 2035, Bình Dương, 2016.[12] M. Mirco, T. Attilio, Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment, Journal of Environmental Science and Health, 48(5) (2013) 568-580. https://doi.org/ 10.1080/10934529.2013.730457. [13] K.J. Havens, H. Berquist, W.I. Priest, Common reed grass, Phragmites australis, expansion into constructed wetlands: Are we mortgaging our wetland future? Estuaries, 26 (2003) 417-422. https://doi.org/10.1007/BF02823718. [14] S. Aboubacar, R. Mohamed, A. Jamal, A. Omar, E. Samira, Exploitation of Phragmites australis (Reeds) in Filter Basins for the Treatment of Wastewater, Journal of Environmental Science and Technology, 11 (2018) 56-67. https://doi.org/10. 3923/jest.2018.56.67. [15] S.I. Abou-Elela, M.S. Hellal, Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus, Ecol. Eng. 47 (2012) 209-213. https://doi.org/10.1016/j. ecoleng.2012.06.044.[16] H. Brix, A.C. Arias, The use of vertical flow constructed welands for on-site treatment of domestic wastewater: New Danish guidelines, Ecological Engineering, 25 (2005) 491-500. https://doi.org/10.1016/j.ecoleng.2005.07.009. [17] J. Puigagut, J. Villasenor, J.J. Salas, E. Becares, J. Garcia, Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparison study, Ecological Engineering, 30 (2007) 312-319. https://doi.org/10.1016/j.ecoleng. 2007.04.005. [18] R. Kadlec, R. Knight, Treatment Wetlands, CRC Press, 1996.[19] L. Yang, H.T. Chang, M.N.L. Huang, Nutrient removal in gravel-and soil-based wetlands microcosms with and without vegetation, Ecological Engineering, 18 (2001) 91-105. https://doi.org/10.1016/S0925-8574(01)00068-4. [20] D. Steer, L. Fraser, J. Boddy, B. Seibert, Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent, Ecological Engineering, 18 (2002) 429-440. https://doi.org/10.1016/S0925-8574(01)00104-5. [21] J. Vymazal, The use of subsurface constructed wetlands for wastewater in Czech Republic: 10 years experience, Ecological Engineering, 18 (2002) 633-646. https://doi.org/10.1016/S0925-8574(02)00025-3. [22] C.S. Akratos, V.A. Tsihrintzis, Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands, Ecological Engineering, 29 (2007) 173-191. https://doi.org/ 10.1016/j.ecoleng.2006.06.013.

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2200
Author(s):  
Georgios D. Gikas ◽  
Vassiliki A. Papaevangelou ◽  
Vassilios A. Tsihrintzis ◽  
Maria Antonopoulou ◽  
Ioannis K. Konstantinou

We assessed constructed wetland (CW) performance in the removal of six emerging pollutants (EPs) from university campus wastewater. The EPs considered were: diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP), bis(2-ehtylxexyl) phthalate (DEHP), tris(1-chloro-2-propyl) phosphate (TCPP) and caffeine (CAF). Six pilot-scale CWs, i.e., three horizontal subsurface flow (HSF) and three vertical flow (VF), with different design configurations were used: two types of plants and one unplanted for both the HSF and the VF, two hydraulic retention times (HRT) for the HSF, and two wastewater feeding strategies for the VF units. The results showed that the median removals in the three HSF-CWs ranged between 84.3 and 99.9%, 79.0 and 95.7%, 91.4 and 99.7%, 72.2 and 81.0%, 99.1 and 99.6%, and 99.3 and 99.6% for DEP, DIBP, DNOP, DEHP, TCPP, and CAF, respectively. In the three VF-CWs, the median removal efficiencies range was 98.6–99.4%, 63.6–98.0%, 96.6–97.8%, 73.6–94.5%, 99.3–99.5% and 94.4–96.3% for DEP, DIBP, DNOP, DEHP, TCPP and CAF, respectively. The study indicates that biodegradation and adsorption onto substrate were the most prevalent removal routes of the target EPs in CWs.


2015 ◽  
Vol 71 (7) ◽  
pp. 1088-1096 ◽  
Author(s):  
B. Kim ◽  
M. Gautier ◽  
G. Olvera Palma ◽  
P. Molle ◽  
P. Michel ◽  
...  

The aim of this study was to characterize the efficiency of an intensified process of vertical flow constructed wetland having the following particularities: (i) biological pretreatment by trickling filter, (ii) FeCl3 injection for dissolved phosphorus removal and (iii) succession of different levels of redox conditions along the process line. A pilot-scale set-up designed to simulate a real-scale plant was constructed and operated using real wastewater. The influences of FeCl3 injection and water saturation level within the vertical flow constructed wetland stage on treatment performances were studied. Three different water saturation levels were compared by monitoring: suspended solids (SS), total phosphorus (TP), dissolved chemical oxygen demand (COD), ammonium, nitrate, phosphate, iron, and manganese. The results confirmed the good overall efficiency of the process and the contribution of the trickling filter pretreatment to COD removal and nitrification. The effects of water saturation level and FeCl3 injection on phosphorus removal were evaluated by analysis of the correlations between the variables. Under unsaturated conditions, good nitrification and no denitrification were observed. Under partly saturated conditions, both nitrification and denitrification were obtained, along with a good retention of SSs. Finally, under saturated conditions, the performance was decreased for almost all parameters.


2003 ◽  
Vol 48 (5) ◽  
pp. 257-266 ◽  
Author(s):  
K. Boonsong ◽  
S. Piyatiratitivorakul ◽  
P. Patanaponpaiboon

The study evaluated the possibility of using mangrove plantation to treat municipal wastewater. Two types of pilot scale (100 × 150 m2) free water surface constructed wetland were set up. One system was a natural Avicennia marina dominated forest system. The other system was a newly planted system in which seedlings of Rhizophora spp., A. marina, Bruguiera cylindrica and Ceriops tagal were planted in 4 strips. Municipal wastewater was retained within the systems for 7 and 3 days, respectively. The results indicated that the average removal percentage of TSS, BOD, NO3-N, NH4-N, TN, PO4-P and TP in the newly planted system were 27.6-77.1, 43.9-53.9, 37.6-47.5, 81.1-85.9, 44.8-54.4, 24.7-76.8 and 22.6-65.3, respectively. Whereas the removal percentage of those parameters in the natural forest system were 17.1-65.9, 49.5-51.1, 44.0-60.9, 51.1-83.5, 43.4-50.4, 28.7-58.9 and 28.3-48.0, respectively. Generally, the removal percentages within the newly planted system and the natural forest system were not significantly different. However, when the removal percentages were compared with detention time, TSS, PO4-P and TP percentages removed were significantly higher in the 7-day detention time treatment. Even though the removal percentages were highly varied and temporally dependent, the overall results showed that mangrove plantation could be used as constructed wetland for municipal wastewater treatment in a similar way to the natural mangrove system.


RSC Advances ◽  
2016 ◽  
Vol 6 (41) ◽  
pp. 34841-34848 ◽  
Author(s):  
Yan Kang ◽  
Jian Zhang ◽  
Huijun Xie ◽  
Zizhang Guo ◽  
Pengfei Li ◽  
...  

An improved constructed wetland (CW) with the addition ofTubifex tubifexin winter was studied in laboratory batch systems. The outcomes of this study indicate that the potential use ofTubifex tubifexcould improve the ecosystem and water purification by CWs in winter.


2010 ◽  
Vol 62 (10) ◽  
pp. 2408-2418 ◽  
Author(s):  
C. Y. Wu ◽  
J. K. Liu ◽  
S. H. Cheng ◽  
D. E. Surampalli ◽  
C. W. Chen ◽  
...  

In Taiwan, more than 20% of the major rivers are mildly to heavily polluted by domestic, industrial, and agricultural wastewaters due to the low percentage of sewers connected to wastewater treatment plants. Thus, constructed or engineered wetlands have been adopted as the major alternatives to clean up polluted rivers. Constructed wetlands are also applied as the tertiary wastewater treatment systems for the wastewater polishment to meet water reuse standards with lower operational costs. The studied Kaoping River Rail Bridge Constructed Wetland (KRRBCW) is the largest constructed wetland in Taiwan. It is a multi-function wetland and is used for polluted creek water purification and secondary wastewater polishment before it is discharged into the Kaoping River. Although constructed wetlands are feasible for contaminated water treatment, wetland sediments are usually the sinks for organics and metals. In this study, water and sediment samples were collected from the major wetland basins in KRRBCW. The investigation results show that more than 97% of total coliforms (TC), 55% of biochemical oxygen demand (BOD), and 30% of nutrients [e.g. total nitrogen (TN), total phosphorus (TP)] were removed via the constructed wetland system. However, results from the sediment analyses show that wetland sediments contained high concentrations of metals (e.g. Cu, Fe, Zn, Cr, and Mn), organic contents (sediment oxygen demand = 1.7 to 7.6 g O2/m2 d), and nutrients (up to 18.7 g/kg of TN and 1.22 g/kg of TN). Thus, sediments should be excavated periodically to prevent the release the pollutants into the wetland system and causing the deterioration of wetland water quality. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal that a variation in microbial diversity in the wetland systems was observed. Results from the DGGE analysis indicate that all sediment samples contained significant amounts of microbial ribospecies, which might contribute to the carbon degradation and nitrogen removal. Gradual disappearance of E. coli was also observed along the flow courses through natural attenuation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document