scholarly journals Genetic analysis of yield components and fiber quality parameters in upland cotton

Author(s):  
Bilal Nawaz, Saira Sattar, Tanwir Ahmad Malik

The experiment was laid to analyze genetic features, genotypic and phenotypic correlation coefficients, path analysis with regression analysis among yield contributing traits in a selected F3 populations of upland cotton including parents. In this research experiment ANOVA showed significant difference among all individual plants in F3 populations. Monopodia per plant and bolls per plant possessed maximum value of PCV% and GCV%. Maximum broad sense heritability (≥ 90) was found in all recorded traits except seeds per boll, fiber length and lint percentage. Correlation studies revealed that Seed cotton yield positively correlated with all yield contributing traits i.e. plant height, monopodial branches per plant, Number of bolls per plant, boll weight, lint weight, seed index, lint index, seeds per boll, fiber fineness, fiber strength and fiber uniformity at both genotypic and phenotypic level whereas it depicted negative relationship with staple length. Path coefficient analysis showed that maximum direct positive effect was found of lint weight (2.6005) on seed cotton yield followed fiber fineness (1.2628), seed index (1.1449) and bolls per plant (1.0027). Regression study exhibited that maximum value of R2 for lint weight (0.9509) and boll weight (0.3735) depicted that 95.09% and 37.35% variation in the seed cotton yield, due to its relationship with lint weight and boll weight. It is concluded that there is a great genetic potential in F3 populations for mostly yield contributing traits for further enhancing yield. So those traits should be used as selection criteria during breeding for yield.

2020 ◽  
Author(s):  
Abdul Rehman ◽  
Nida Mustafa ◽  
Du Xiongming ◽  
Muhammad Tehseen Azhar

Abstract Background Cotton is known for its fiber and it is grown in tropical and sub-tropical areas of the world. It has a significant role in GDP of Pakistan. Therefore, present two years research was conducted to estimate heritability and association among various yield contributing parameters of cotton. The selected genotypes of cotton were hybridized in green house of the department. The F 0 cotton seed along with parents were planted in the field conditions during May, 2018. The sowing of this experiment was completed in three replications followed by RCBD. The data was recorded at maturity for various agronomic traits including plant height, number of bolls per plant, number of sympodial branches per plant, seed cotton yield, boll weight, seed index, ginning out turn, fiber length, fiber strength, and fiber fineness. Level of significance of data was computed by ANOVA to assess the difference among cotton genotypes which was used for estimation of heritability and correlation analysis among the related traits. Results Association analysis revealed that seed cotton yield had significant positive relationship with plant height, number of bolls per plant, number of sympodial branches per plant, ginning out turn, staple length and fiber strength. Staple length and fiber strength were negatively linked with each other. Estimates of heritability were high for all observed traits except number of sympodial branches per plant and boll weight. Conclusion The parent IUB-222 was found best for plant height, number of bolls per plant, boll weight, ginning out turn, seed cotton yield and seed index. NIAB-414 and VH-367 were identified best parents for fiber length, strength and fineness. Among crosses NIAB-414 × IUB-222 was best for number of bolls per plant, seed index, seed cotton yield and fiber fineness. Whereas, cross NIAB-414 × CIM-632 was good for plant height. The combination of A555 × CIM-632 was best for number of sympodial branches per plant, boll weight, fiber length and strength. VH-367 × CIM-632 proved best for ginning out turn. The correlation results from this study would be helpful to breed cotton cultivars with good yield and quality characters. Broad sense heritability was high for all of parameters which provides the strong evidence that selection in early generations can improve the performance of these traits.


2020 ◽  
Author(s):  
Abdul Rehman ◽  
Nida Mustafa ◽  
Du Xiongming ◽  
Muhammad Tehseen Azhar

Abstract Background: Cotton is known for fiber extraction and it is grown in tropical and sub-tropical areas of the world due to having hot weather. Cotton crop has a significant role in GDP of Pakistan. Therefore, the two-years research was conducted to estimate heritability and association among various yield contributing parameters of cotton, i.e., plant height, number of bolls per plant, number of sympodial branches per plant, seed cotton yield, boll weight, seed index, ginning outturn (GOT), fiber length, fiber strength, and fiber fineness. Results: Association analysis revealed that seed cotton yield had significant positive correlation with plant height, number of bolls per plant, number of sympodial branches per plant, ginning outturn (GOT), staple length and fiber strength. Staple length and fiber strength were negatively linked with each other. Estimates of heritability were high for all of the traits except number of sympodial branches per plant and boll weight.Conclusion: The parent IUB-222 was found to be the best for plant height, number of bolls per plant, boll weight, ginning outturn (GOT), seed cotton yield and seed index. The genotypes namely NIAB-414 and VH-367 were identified as the best parents for fiber length, strength and fineness. Among the crosses NIAB-414 × IUB-222 was the best for number of bolls per plant, seed index, seed cotton yield and fiber fineness, whereas, cross of NIAB-414 × CIM-632 was good for plant height. The combination of A555 × CIM-632 was the best for number of sympodial branches per plant, boll weight, fiber length and strength, and VH-367 × CIM-632 proved the best for ginning outturn (GOT).


2020 ◽  
Author(s):  
Abdul Rehman ◽  
Nida Mustafa ◽  
Du Xiongming ◽  
Muhammad Tehseen Azhar

Abstract Background Cotton is known for fiber extraction and it is grown in tropical and sub-tropical areas of the world due to having hot weather. Cotton crop has a significant role in GDP of Pakistan. Therefore, the two years research was conducted to estimate heritability and association among various yield contributing parameters of cotton i.e. plant height, number of bolls per plant, number of sympodial branches per plant, seed cotton yield, boll weight, seed index, GOT, fiber length, fiber strength, and fiber fineness. Results Association analysis revealed that seed cotton yield had significant positive correlation with plant height, number of bolls per plant, number of sympodial branches per plant, GOT, staple length and fiber strength. Staple length and fiber strength were negatively linked with each other. Estimates of heritability were high for all of the traits except number of sympodial branches per plant and boll weight. Conclusion The parent IUB-222 was found to be best for plant height, number of bolls per plant, boll weight, GOT, seed cotton yield and seed index. The genotypes namely NIAB-414 and VH-367 were identified as best parents for fiber length, strength and fineness. Among the crosses NIAB-414 × IUB-222 was best for number of bolls per plant, seed index, seed cotton yield and fiber fineness, whereas, cross of NIAB-414 × CIM-632 was good for plant height. The combination of A555 × CIM-632 was best for number of sympodial branches per plant, boll weight, fiber length and strength, and VH-367 × CIM-632 proved best for GOT.


Author(s):  
Bilal Nawaz ◽  
Saira Sattar ◽  
Bilal Bashir ◽  
Muhammad Jamshaid ◽  
Khadim Hussain ◽  
...  

Background: Cotton (Gossypium hirsutum L.) is grown in more than sixty countries worldwide. It is an important fiber crop in the world. It plays a vital role in our national economy being the source of earning of foreign exchange, therefore, it is considered to be the backbone of the economy of Pakistan. In Pakistan, millions of families are associated with cotton and textile industry for their livelihood.  Results: In this experiment F2 population of the cross L. A. Frego Bract x CIM-600 and their parents was sown in randomized complete block design with three replications during normal growing season of the year 2014 to sort out best performing genotypes for yield related traits. Analysis of variance (ANOVA) revealed that parental and their F2 population showed significant differences for all the observed agronomic traits (plant height, number of monopodia branches, number of sympodial branches, number of bolls per plant, boll weight, ginning out turn, bract type, boll shape, beak size, seed cotton yield, staple length, fiber strength and fiber fineness). Estimation of correlation revealed that seed cotton yield was found positively correlated sympodial branches, fiber fineness and boll weight while ginning out turn, bract type, beak size, staple length and fiber strength were negatively associated with seed cotton yield. Epistasis was not found to be involved in any of the traits. Conclusion:  The correlation and genetics study of various yield related traits provides us useful information for effective selection and sustainable breeding programs. Estimation of broad sense heritability ( ) in F2 populations for different traits vary as following order; ginning out turn>plant height>seed cotton yield>sympodia branches>fiber length>fiber strength>bolls per plant>monopodia branches>boll weight>fiber fineness with heritability 0.90, 0.79, 0.78, 0.75, 0.73, 0.71 0.67, 0.64, 0.63 and 0.50 respectively. Results suggested form heritability and correlation that these traits can be improved either through appropriate selection method or hybrid breeding programme.


Author(s):  
K. H. Deshmukh V. N. Chinchane ◽  
A. V. Shinde

The present investigation entitled “Studies on Heterosis for Yield and Yield Contributing Traits in Desi Cotton (Gossypium arboreum L.) was undertaken with the objective to study the scale of heterosis over mid parent (Average heterosis), better parent (Heterobeltiosis) and standard check (Standard heterosis). The line x tester method of analysis was followed involving four females viz., PA 811, PA 839, PA 808 and PAIG 380 and six males viz. AKA 8, JLA 505, PA 812, AKA 7, PA 08 and Phule Dhanwantry for study of heterosis for various yield and yield contributing characters. The F1’s and theis parents were evaluated in Randomized Block Design with two replications. Observations were recorded on Days to 50 % flowering, Plant height (cm), Number of sympodia, Number of bolls/plant, Boll weight (g), Seed index, Seed cotton yield/plant (g) and Lint index. The magnitude of heterosis was highest for seed cotton yield per plant, which was recorded to the extent of 115.28 % over standard check PKV Suvarna in the cross PAIG 380 x AKA 8 followed by 109.68 % over standard check PKVDH 1.


Author(s):  
M. M. A. Ali ◽  
S. Kundu ◽  
M. F. Alam ◽  
B. K. Biswas ◽  
M. Hasanuzzaman

The experiment was conducted at Cotton Research Centre, Chowgacha, Jessore during 2015-2016 with twenty genetically diverged genotypes, with a view to select desirable genotypes and important characters enhancing seed cotton yield in upland cotton. The experiment was laid out in RCBD with three replications. The unit plot size was 4.5 m x 4.5 m and the spacing, 45 cm ×90 cm. Data were recorded from randomly selected ten plants on monopodial branches plant-1, primary sympodial branches plant-1,secondary sympodial branches plant-1, main stem nodes plant-1, days to 1st (5%) flowering, days to 1st boll splitting, bolls plant-1, single boll weight (g), unburst bolls plant-1, plant height (cm), seeds boll-1, seed cotton yield (kg ha-1). The genotype JA-08/D produced the highest seed cotton yield (3430 kg ha-1) followed by two genotypes JA-08/C (3329 kg ha-1) and JA-08/E (3226 kg ha-1). Though high heritability (90.36-97.46%) were estimated for four characters but high heritability along with high genetic advance values were observed for bolls plant-1, boll weight and seeds boll-1. The moderate heritability (83.58%) with high genetic advance (48.54%) suggests seed cotton yield is controlled by additive and non-additive genetic factors. In general, genotypic correlation coefficient was higher than corresponding phenotypic correlation coefficient due to inherent potential of the genotypes for expressing the individual characters. However, six characters, secondary sympodial branches plant-1, main stem nodes plant-1, days to 1st flowering, bolls plnat-1, boll weight and seeds boll-1 showed positive and significant association. Upon partitioning the correlation coefficients of seed cotton yield with other characters confirmed significant contribution of three characters like bolls plant-1, boll weight and seeds boll- 1. Therefore, three genotypes, JA-08/D, JA-08/C and JA-08/E and three characters, bolls plant-1, boll weight and seeds boll- 1 may be considered by the breeders for improving seed cotton yield in upland cotton.


Author(s):  
Waqas Ahmed Lashari ◽  
Salma Naimatullah ◽  
Hamza Afzal

A field experiment was conducted at ICI Research Farm, Multan to evaluate the effect of different sowing dates on plant height, number of monopodia, number of sympodia, number of bolls per plant, boll weight, seed cotton yield kg/ha of two upland cotton varieties (ICI-2121 and ICI-2424) developed by ICI Pakistan Limited, Multan against a standard check variety IUB-2013 during 2019, and 2020 years.  These varieties were planted on 1st April, 15th April, 1st May, 15th May, 1st June, and 15th June, at ICI Cotton Research Station, 19-Kasi Vehari Road, Multan.  Results revealed that statistically highly significant differences in planting dates were observed for all the parameters studied except number of monopodial branches and boll weight which depicted non-significant differences. Regarding varieties and interaction between varieties and planting times, similar trend of statistical differences was observed. As regards to planting dates, generally, all the parameters under study showed their maximum performance when crop was planted on 1st May followed by 1st April planting date, whereas, minimum performance of the parameters was recorded when the crop was planted on 15th June followed by 1st June. Regarding varietal performance, on an average, maximum plant height (146cm) was observed in ICI-2121 followed by IUB-2013. Same trend of performance of varieties regarding number of monopodia and sympodia per plant was observed.  Regarding average number of bolls per plant in different varieties, it was observed that ICI-2121 produced maximum (32 bolls) followed by ICI-2424 (31 bolls) and IUB-2013 (28 bolls) irrespective of planting dates. The same trend of varietal performance regarding boll weight was recorded. When seed cotton yield (kg/ha) was evaluated, on an average of varieties, ICI-2121 produced maximum seed cotton yield (1228 kg/ha) followed by ICI-2424 and IUB-2013 which produced 1147 and 1046 kg/ha seed cotton yield respectively irrespective of planting dates. It was concluded that under agro-climatic conditions of Multan, 1st May planting date was evaluated as optimum cotton sowing time. Before or after 1st May, this study does not recommend growing cotton in this particular zone.  Among cotton varieties, ICI-2121 is recommended for sowing under this planting time being producing higher yields.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Sara E. I. Eldessouky ◽  
A. B. A. El-Fesheikawy ◽  
K. M. A. Baker

Abstract Background Cotton breeding programs mainly focus on improving cotton fibers, but less attention has been paid by breeders to cottonseed oil improvement. Breeding cottonseed for oil content has mainly depended on phenotypic information used to select varieties with high seed oil content. The purpose of this study was to evaluate some cotton genotypes regarding their oil content and other characters related to fiber yield, in order to select genotypes with high oil content and acceptable levels of the other characters. Seventeen different genotypes of cotton were used in this study. A two-year experiment was carried out at Sids Agricultural Research Station, Beni Suef, Egypt, during 2017 and 2018, using a randomized complete block design with six replications. Seed cotton yield, lint cotton yield, boll weight, seed index, embryo index, oil % and embryo oil index characters were recorded. Results The analysis of variance results showed highly significant differences among the genotypes for all the studied traits except boll weight in season 2017. The overall cotton embryo oil % ranged from 33.40 to 40.28 among the genotypes, while the overall cotton embryo oil index ranged from 1.79 to 2.47. Maximum cotton embryo oil % was noted by the genotypes 15 [{(G83 × G80) × G89} × Australian] and 8 [(G 91 × G90) × (G 85 × G 83)], while maximum cotton embryo oil index was noted by the genotype 13 [(G 91 × G 90) × G80]. The results showed positive correlations between seed cotton yield and lint cotton yield, seed index and embryo index, seed index and embryo index oil %, embryo index and embryo index oil %, and oil % and embryo index oil %. Conclusions It could be concluded that using seed or embryo oil percentages as criteria for differentiating genotypes according to their oil content is misleading and the best efficient measure is using the seed or embryo oil indices because they depend on weight basis. Also, Genotypes 13, 15 and 8 were the best genotypes regarding oil % and they could be used in breeding programs for cotton oil improvement.


Author(s):  
V. N. Chinchane D. B. Deosarkar ◽  
K. S. Baig H. V. Kalpande

Cotton is one of the most important fiber and cash crop of India and plays a dominant role in the industrial and agricultural economy of the country. Fifty six crosses with fifteen parents and four checks viz., PKVDH 1, PKVSuvarna, NACH 12 and PA 255 were grown in Randomized Block Design with two replications. Pooled over the environments, the highest GCA effect for seed cotton yield plant was showed by line PAIG 346and also exhibited high GCA (in desirable direction) for the traits, sympodia per plant, number of bolls per plant, seed index, lint index and harvest index. Among the testers, highest GCA for seed cotton yield per plant (9.72) was reported in CNA 449.This tester showed significantly desirable GCA for the characters viz. plant height, number of sympodia per plant, number of bolls per plant, boll weight, seed index and harvest index. Pooled over the environments, among the crosses highest SCA for seed cotton yield per plant was reported in PA 740 x Digvijay. It has also exhibited significant SCA in desirable direction for days to 50 % boll bursting, number of sympodia per plant, number of bolls per plant, boll weight, seed index and harvest index. Another cross which ranked second for with high per se and high SCA for seed cotton yield per plant was PAIG 346 x DWDa 1402.It showed significantly desirable SCA for days to 50 % flowering, number of sympodia per plant, number of bolls per plant, seed index, lint index and harvest index.


2018 ◽  
Vol 54 (No. 2) ◽  
pp. 71-77 ◽  
Author(s):  
S. Munir ◽  
M.K. Qureshi ◽  
A.N. Shahzad ◽  
H. Manzoor ◽  
M.A. Shahzad ◽  
...  

Combining ability analysis was performed in order to identify high-yielding genotypes and hybrids. Six lines were crossed with three testers using a line × tester mating design. General combining ability (GCA) of parents, specific combining ability (SCA) of hybrids and gene action for several yield components and fibre were studied in the experiment. Additive gene action was observed in most traits except bolls/plant, sympodia/plant, monopodia/plant, total nodes, seed index, lint/seed, staple strength and seed cotton yield/plant which were influenced by non-additive gene action. GCA revealed that Giza-7 was a good general combiner for staple length, staple strength, seed index, boll weight, bolls/plant and monopodia/plant and BH-167 was good for ginning outturn (GOT) and sympodia/plant. Results of SCA values for hybrids indicated, that the cross Giza-7 × MNH-886 was a superior specific combiner for staple length, monopodia/plant, staple strength and seed cotton yield/plant; CIM-554 × CIM-557 for boll weight, sympodia/plant and lint weight/boll; BH-167 × MNH-886 for GOT and bolls/plant. Selection of such hybrids and good general combiners could be further exploited for yield improvement.


Sign in / Sign up

Export Citation Format

Share Document