AN OVERVIEW OF TECHNIQUES FOR GENETIC EVOLUTION OF FUZZY SYSTEMS

2003 ◽  
Vol 08 (01) ◽  
Author(s):  
J. Lambert ◽  
A. Kandel ◽  
M. Schneider
2015 ◽  
Vol 37 ◽  
pp. 190
Author(s):  
Tayebe Noshadi ◽  
Marzieh Dadvar ◽  
Nastaran Mirza ◽  
Shima Shamseddini

Genetic algorithm is one of the random searches algorithm. Genetic algorithm is a method that uses genetic evolution as a model of problem solving. Genetic algorithm for selecting the best population, but the choices are not as heuristic information to be used in specific issues. In order to obtain optimal solutions and efficient use of fuzzy systems with heuristic rules that we would aim to increase the efficiency of parallel genetic algorithms using fuzzy logic immigration, which in fact do this by optimizing the parameters compared with the use of fuzzy system is done.


2019 ◽  
Vol 42 ◽  
Author(s):  
Eva Jablonka ◽  
Simona Ginsburg ◽  
Daniel Dor

Abstract Heyes argues that human metacognitive strategies (cognitive gadgets) evolved through cultural rather than genetic evolution. Although we agree that increased plasticity is the hallmark of human metacognition, we suggest cognitive malleability required the genetic accommodation of gadget-specific processes that enhanced the overall cognitive flexibility of humans.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 32 (7) ◽  
pp. 915-924 ◽  
Author(s):  
Jun Yoneyama ◽  
Masahiro Nishikawa ◽  
Hitoshi Katayama ◽  
Akira Ichikawa
Keyword(s):  

2011 ◽  
Vol 7 (2) ◽  
pp. 102-106 ◽  
Author(s):  
Taqwa Odey Fahad ◽  
Abduladhim A. Ali
Keyword(s):  

2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


Author(s):  
Renata Bernardes ◽  
Bruno Luiz Pereira ◽  
Felipe Machini Malachias Marques ◽  
Roberto Mendes Finzi Neto

Sign in / Sign up

Export Citation Format

Share Document