Large-Eddy Simulation and Acoustic Analysis of a Swirled Staged Turbulent Combustor

AIAA Journal ◽  
2006 ◽  
Vol 44 (4) ◽  
pp. 741-750 ◽  
Author(s):  
Charles E. Martin ◽  
Laurent Benoit ◽  
Yannick Sommerer ◽  
Franck Nicoud ◽  
Thierry Poinsot
Author(s):  
Man Zhang

A diffusion swirling flame under external forcing and self-excitation within a single swirler combustor have been studied in this paper with the large-eddy simulation and linear acoustic method. The combustor features pre-vaporized kerosene as the fuel, a single radial air swirler for flame stabilization and a square cross section chamber with adjustable length. Firstly, self-sustained pressure oscillation has been achieved by using of a chocked nozzle on the chamber outlet with large-eddy simulation. Dynamic pressure oscillations are analyzed in frequency domain through Fast Fourier Transform. The major pressure oscillation is identified as the 1st order longitudinal mode of the chamber. Further, the same frequency in the form of harmonic velocity oscillation is imposed on the inlet of the combustor while the chamber length has been changed. Based on this approach, a comparative study of the flame response with different excitation method but same frequency is carried out. In both self-excited and forced cases, global and local flame responses as well as Rayleigh index have been analyzed and compared. With the flame response function, the excited acoustic modes under the influence of dynamic heat release have been predicted with linear acoustic method and compared with the results obtained from large-eddy simulation. Results show that the flame response presents a great difference in the spacial distribution with different excitation approaches. Thermo-acoustic interaction distributes along the flame front with the expansion of the flame under self-excitation while it damps with the acoustic propagating downstream under forcing condition. As the ratio of flame length to acoustic wave length could not be neglected for the diffusion swirling flame, the global flame response under forcing cannot represent the local response feature of the flame accurately, thus influencing the instability prediction.


Sign in / Sign up

Export Citation Format

Share Document