Novel Expressions of Equations of Relative Motion and Control in Keplerian Orbits

2009 ◽  
Vol 32 (2) ◽  
pp. 664-669 ◽  
Author(s):  
Hyungjoo Yoon ◽  
Brij N. Agrawal
2021 ◽  
pp. 44-50
Author(s):  

Some issues of creation and control of two-handed robotic systems are considered. Keywords: two-handed robot, relative manipulation mechanism, relative motion, control algorithm, assembly [email protected]


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Tong Li ◽  
Qingguo Li ◽  
Tao Liu ◽  
Jingang Yi

Abstract Carrying heavy loads costs additional energy during walking and leads to fatigue of the user. Conventionally, the load is fixed on the body. Some recent studies showed energy cost reduction when the relative motion of the load with respect to the body was allowed. However, the influences of the load's relative motion on the user are still not fully understood. We employed an optimization-based biped model, which can generate human-like walking motion to study the load–carrier interaction. The relative motion can be achieved by a passive mechanism (such as springs) or a powered mechanism (such as actuators), and the relative motion can occur in the vertical or fore-aft directions. The connection between the load and body is added to the biped model in four scenarios (two types × two directions). The optimization results indicate that the stiffness values affect energy cost differently and the same stiffness value in different directions may have opposite effects. Powered relative motion in either direction can potentially reduce energy cost but the vertical relative motion can achieve a higher reduction than fore-aft relative motion. Surprisingly, powered relative motion only performs marginally better than the passive conditions at similar peak interaction force levels. This work provides insights into developing more economical load-carrying methods and the model presented may be applied to the design and control of wearable load-carrying devices.


2007 ◽  
Vol 30 (2) ◽  
pp. 521-528 ◽  
Author(s):  
Philip L. Palmer ◽  
Egemen Imre

2016 ◽  
Vol 58 ◽  
pp. 389-400 ◽  
Author(s):  
Wei Wang ◽  
Giovanni Mengali ◽  
Alessandro A. Quarta ◽  
Jianping Yuan

Author(s):  
Yongxing Tang ◽  
Zhanxia Zhu

In order to better meet the future high precision task requirements, the DFP(Disturbance-Free Payload) spacecraft composed of non-contact PM(Payload Module)and SM(Support Module)is taken as the object to study the relative motion dynamics modeling and control between the two modules and verify the system vibration isolation performance. Firstly, the force and torque expressions of the two modules are derived by simplifying the configuration and analyzing the stress. In view of that couple effect, the relative motion dynamics equations between two modules of DFP spacecraft with high model accuracy, and simple and uniform format are established with the dual quaternions. Based on this, the PD control law is designed, and the relative motion of PM and SM could meet DFP spacecraft working requirements when the measurability of control quantity and the measurement error of sensors were taken into account. Simulation results verify the advantage of vibration isolation and attitude maneuverability of DFP spacecraft.


Sign in / Sign up

Export Citation Format

Share Document