Multiple Injector Model for Primary Breakup of a Liquid Jet in Crossflow

AIAA Journal ◽  
2011 ◽  
Vol 49 (11) ◽  
pp. 2407-2420 ◽  
Author(s):  
A. Mashayek ◽  
M. Behzad ◽  
N. Ashgriz
Author(s):  
C.-L. Ng ◽  
K. A. Sallam

The deformation of laminar liquid jets in gaseous crossflow before the onset of primary breakup is studied motivated by its application to fuel injection in jet afterburners and agricultural sprays, among others. Three crossflow Weber numbers that represent three different liquid jet breakup regimes; column, bag, and shear breakup regimes, were studied at large liquid/gas density ratios and small Ohnesorge numbers. In each case the liquid jet was simulated from the jet exit and ended before the location where the experimental data indicated the onset of breakup. The results show that in column and bag breakup, the reduced pressures along the sides of the jet cause the liquid to move to the sides of the jet and enhance the jet deformation. In shear breakup, the flattened upwind surface pushes the liquid towards the two sides of the jet and causing the gaseous crossflow to separate near the edges of the liquid jet thus preventing further deformation before the onset of breakup. It was also found out that in shear breakup regime, the liquid phase velocity inside the liquid jet was large enough to cause onset of ligament formation along the jet side, which was not the case in the column and bag breakup regimes. In bag breakup, downwind surface waves were observed to grow along the sides of the liquid jet triggered a complimentary experimental study that confirmed the existence of those waves for the first time.


Author(s):  
Charles R. Clark ◽  
Michael E. Tonarely ◽  
Jonathan Reyes ◽  
Kareem A. Ahmed
Keyword(s):  

2019 ◽  
Vol 154 ◽  
pp. 119-132 ◽  
Author(s):  
Y.H. Zhu ◽  
F. Xiao ◽  
Q.L. Li ◽  
R. Mo ◽  
C. Li ◽  
...  
Keyword(s):  

Author(s):  
Feng Xiao ◽  
Mehriar Dianat ◽  
James J. McGuirk

A robust two-phase flow LES methodology is described, validated and applied to simulate primary breakup of a liquid jet injected into an airstream in either co-flow or cross-flow configuration. A Coupled Level Set and Volume of Fluid method is implemented for accurate capture of interface dynamics. Based on the local Level Set value, fluid density and viscosity fields are treated discontinuously across the interface. In order to cope with high density ratio, an extrapolated liquid velocity field is created and used for discretisation in the vicinity of the interface. Simulations of liquid jets discharged into higher speed airstreams with non-turbulent boundary conditions reveals the presence of regular surface waves. In practical configurations, both air and liquid flows are, however, likely to be turbulent. To account for inflowing turbulent eddies on the liquid jet interface primary breakup requires a methodology for creating physically correlated unsteady LES boundary conditions, which match experimental data as far as possible. The Rescaling/Recycling Method is implemented here to generate realistic turbulent inflows. It is found that liquid rather than gaseous eddies determine the initial interface shape, and the downstream turbulent liquid jet disintegrates much more chaotically than the non-turbulent one. When appropriate turbulent inflows are specified, the liquid jet behaviour in both co-flow and cross-flow configurations is correctly predicted by the current LES methodology, demonstrating its robustness and accuracy in dealing with high liquid/gas density ratio two-phase systems.


2021 ◽  
pp. 1-36
Author(s):  
Sheikh Salauddin ◽  
Wilmer Flores ◽  
Michelle Otero ◽  
Bernhard Stiehl ◽  
Kareem Ahmed

Abstract Liquid fuel jet in Crossflow (LJIC) is a vital atomization technique significant to the aviation industry. The hydrodynamic instability mechanisms that drive a primary breakup of a transverse jet are investigated using modal and traveling wavelength analysis. This study highlights the primary breakup mechanisms for aviation fuel Jet-A, utilizing a method that could be applied to any liquid fuel. Mathematical decomposition techniques known as POD (Proper Orthogonal Decomposition) and Robust MrDMD (Multi-Resolution Dynamic Mode Decomposition) are used together to identify dominant instability flow dynamics associated with the primary breakup mechanism. Implementation of the Robust MrDMD method deconstructs the nonlinear dynamical systems into multiresolution time-scaled components to capture the intermittent coherent structures. The Robust MrDMD, in conjunction with the POD method, is applied to data points taken across the entire spray breakup regimes: enhanced capillary breakup, bag breakup, multimode breakup, and shear breakup. The dominant frequencies of breakup mechanisms are extracted and identified. These coherent structures are classified with an associated time scale and Strouhal number. Three primary breakup mechanisms, namely ligament shedding, bag breakup, and shear breakup, were identified and associated with the four breakup regimes outlined above. Further investigation portrays these breakup mechanisms to occur in conjunction with each other in each breakup regime, excluding the low Weber number Enhanced Capillary Breakup regime. Spectral analysis of the Robust MrDMD modes' entire temporal window reveals that while multiple breakup mechanisms are convolved, there is a dominant breakup route for each breakup regime. An associated particular traveling wavelength analysis further investigates each breakup mechanism. Lastly, this study explores the effects of an increased momentum flux ratio on each breakup mechanism associated with a breakup regime.


2019 ◽  
Author(s):  
Wilmer Flores ◽  
Otero Michelle ◽  
Kareem A. Ahmed

Sign in / Sign up

Export Citation Format

Share Document