breakup mechanism
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Vol 6 (1) ◽  
pp. 5
Author(s):  
Volfango Bertola

The micro-scale morphology of the receding contact line of dilute polyethylene oxide solution drops (c ∼ 100 ppm) after impact and inertial spreading on a fluorinated hydrophobic surface is investigated. One can observe the formation of transient liquid filaments and dendritic structures that evolve into a bead-on-a-string structure similar to the well-known capillary breakup mechanism of dilute polymer solutions, which confirm the interaction between stetched polymer coils and the receding three-phase contact line. The estimation of the average polymer force per unit contact line lenght provides a quantitative explanation for the reduction of the contact line retraction velocity reduction observed experimentally.


2021 ◽  
pp. 1-36
Author(s):  
Sheikh Salauddin ◽  
Wilmer Flores ◽  
Michelle Otero ◽  
Bernhard Stiehl ◽  
Kareem Ahmed

Abstract Liquid fuel jet in Crossflow (LJIC) is a vital atomization technique significant to the aviation industry. The hydrodynamic instability mechanisms that drive a primary breakup of a transverse jet are investigated using modal and traveling wavelength analysis. This study highlights the primary breakup mechanisms for aviation fuel Jet-A, utilizing a method that could be applied to any liquid fuel. Mathematical decomposition techniques known as POD (Proper Orthogonal Decomposition) and Robust MrDMD (Multi-Resolution Dynamic Mode Decomposition) are used together to identify dominant instability flow dynamics associated with the primary breakup mechanism. Implementation of the Robust MrDMD method deconstructs the nonlinear dynamical systems into multiresolution time-scaled components to capture the intermittent coherent structures. The Robust MrDMD, in conjunction with the POD method, is applied to data points taken across the entire spray breakup regimes: enhanced capillary breakup, bag breakup, multimode breakup, and shear breakup. The dominant frequencies of breakup mechanisms are extracted and identified. These coherent structures are classified with an associated time scale and Strouhal number. Three primary breakup mechanisms, namely ligament shedding, bag breakup, and shear breakup, were identified and associated with the four breakup regimes outlined above. Further investigation portrays these breakup mechanisms to occur in conjunction with each other in each breakup regime, excluding the low Weber number Enhanced Capillary Breakup regime. Spectral analysis of the Robust MrDMD modes' entire temporal window reveals that while multiple breakup mechanisms are convolved, there is a dominant breakup route for each breakup regime. An associated particular traveling wavelength analysis further investigates each breakup mechanism. Lastly, this study explores the effects of an increased momentum flux ratio on each breakup mechanism associated with a breakup regime.


Author(s):  
Chang Hun Lee ◽  
Somchai Wongwises ◽  
Dong-Wook Jerng ◽  
Ho Seon Ahn

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Kooij ◽  
Gerard van Dalen ◽  
Jean-François Molinari ◽  
Daniel Bonn

AbstractAnyone who has ever broken a dish or a glass knows that the resulting fragments range from roughly the size of the object all the way down to indiscernibly small pieces: typical fragment size distributions of broken brittle materials follow a power law, and therefore lack a characteristic length scale. The origin of this power-law behavior is still unclear, especially why it is such an universal feature. Here we study the explosive fragmentation of glass Prince Rupert’s drops, and uncover a fundamentally different breakup mechanism. The Prince Rupert’s drops explode due to their large internal stresses resulting in an exponential fragment size distribution with a well-defined fragment size. We demonstrate that generically two distinct breakup processes exist, random and hierarchical, that allows us to fully explain why fragment size distributions are power-law in most cases but exponential in others. We show experimentally that one can even break the same material in different ways to obtain either random or hierarchical breakup, giving exponential and power-law distributed fragment sizes respectively. That a random breakup process leads to well-defined fragment sizes is surprising and is potentially useful to control fragmentation of brittle solids.


2021 ◽  
pp. 103620
Author(s):  
Cuimei Zhang ◽  
Zhen Sun ◽  
Gianreto Manatschal ◽  
Xiong Pang ◽  
Sanzhong Li ◽  
...  

2021 ◽  
Author(s):  
Cuimei Zhang ◽  
Zhen Sun ◽  
Gianreto Manatschal ◽  
Xiong Pang ◽  
Sanzhong Li ◽  
...  

<p>Ocean Continent Transition (OCT) located between the edge of the continental and unequivocal oceanic crust is an ideal laboratory to understand one of the most fundamental processes of Plate Tectonics, namely the mechanism of formation of a new plate boundary, also referred to as lithospheric breakup. However, the location and architecture of the OCT and the processes governing the rupture of continental lithosphere and creation of new oceanic crust remain debated. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crust in the mid-northern South China Sea (SCS), accompanied with IODP drill hole and gravity data, with the aim to map the OCT and explore where, when and how lithospheric breakup occur.</p><p>Based on observations and interpretations we define the limits of OCT. The results show that OCT corresponds to hybrid crust resulting from the complex interaction between crustal thinning along detachment systems and accretion of new syn-tectonic igneous materials. The observations suggest a sharp along strike transition in the OCT from a lower to an upper plate setting over a lateral distance of 25 km. The breakup in the northern SCS and the conjugate margin occurred asymmetrically and was accomplished by core-complex type structures related to a successive oceanward transition from tectonic to magma-controlled processes during plate separation. The along-strike variability in the basement architecture and the abrupt flip in detachment polarity in the OCT imply a sharp transfer fault to explain the segmentation of the margin. Such segmentation results from inherited pre-rift crustal and/or lithospheric heterogeneities. It is important to note that the segmentation did not control breakup and subsequent oceanic accretion.</p>


2021 ◽  
Vol 121 ◽  
pp. 110290
Author(s):  
A. García-Magariño ◽  
S. Sor ◽  
A. Velazquez

Sign in / Sign up

Export Citation Format

Share Document