Structural Damage Detection Using Generalized Flexibility Matrix and Changes in Natural Frequencies

AIAA Journal ◽  
2012 ◽  
Vol 50 (5) ◽  
pp. 1072-1078 ◽  
Author(s):  
Jing Li ◽  
Zhengguang Li ◽  
Huixiang Zhong ◽  
Baisheng Wu
2013 ◽  
Vol 13 (05) ◽  
pp. 1250082 ◽  
Author(s):  
XIAO-QING ZHOU ◽  
WEN HUANG

In vibration-based structural damage detection, it is necessary to discriminate the variation of structural properties due to environmental changes from those caused by structural damages. The present paper aims to investigate the temperature effect on vibration-based structural damage detection in which the vibration data are measured under varying temperature conditions. A simply-supported slab was tested in laboratory to extract the vibration properties with modal testing. The slab was then damaged and the modal testing was conducted again, in which the temperature varied. The modal data measured under different temperature conditions were used to detect the damage with a two-stage model updating technique. Some damage was falsely detected if the temperature variation was not considered. Natural frequencies were then corrected to those under the same temperature conditions according to the relation between the temperature and material modulus. It is shown that all of the damaged elements can be accurately identified.


Author(s):  
Shuncong Zhong ◽  
S. Olutunde Oyadiji

This paper proposes a response-only method in frequency domain for structural damage detection by using the derivative of natural frequency curve of beam-like structures with a traversing auxiliary mass. The approach just uses the response time history of beam-like structures and does not need the external source of force excitation. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in flexibility and inertia of the beam as the auxiliary mass is traversed along the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitating locating the damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the Fast Fourier Transform of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. A spectrum correction method is employed to estimate high accurate frequencies of structures with a traversing auxiliary mass. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the Finite Element Analysis. The graphical plots of the natural frequencies versus axial location of auxiliary mass are obtained. The derivatives of natural frequency curve can provide crack information for damage detection of beam-like structures. However, it is suggested that the derivative do not go beyond the third derivative of natural frequency curves to avoid the difference approximation error which will be magnified at higher derivative. The sensitivity of crack index for different noise, crack depth, auxiliary mass and damping ratio are also investigated. The simulated result demonstrated the efficiency and precision of the response-only frequency-domain method which can be recommended for the real application in structural damage detection.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Q. W. Yang ◽  
J. K. Liu ◽  
C.H. Li ◽  
C.F. Liang

Structural damage detection using measured response data has emerged as a new research area in civil, mechanical, and aerospace engineering communities in recent years. In this paper, a universal fast algorithm is presented for sensitivity-based structural damage detection, which can quickly improve the calculation accuracy of the existing sensitivity-based technique without any high-order sensitivity analysis or multi-iterations. The key formula of the universal fast algorithm is derived from the stiffness and flexibility matrix spectral decomposition theory. With the introduction of the key formula, the proposed method is able to quickly achieve more accurate results than that obtained by the original sensitivity-based methods, regardless of whether the damage is small or large. Three examples are used to demonstrate the feasibility and superiority of the proposed method. It has been shown that the universal fast algorithm is simple to implement and quickly gains higher accuracy over the existing sensitivity-based damage detection methods.


2013 ◽  
Vol 681 ◽  
pp. 271-275
Author(s):  
Jing Li ◽  
Pei Jun Wei

Based on the vibration information, a mixed sensitivity method is presented to identify structural damage by combining the eigenvalue sensitivity with the generalized flexibility sensitivity. The sensitivity of structural generalized flexibility matrix is firstly derived by using the first frequency and the corresponding mode shape only and then the eigenvalue sensitivity together with the generalized flexibility sensitivity are combined to calculate the elemental damage parameters. The presented mixed perturbation approach is demonstrated by a numerical example concerning a simple supported beam structure. It has been shown that the proposed procedure is simple to implement and may be useful for structural damage identification.


2012 ◽  
Vol 594-597 ◽  
pp. 1074-1077 ◽  
Author(s):  
Jing Li

Based on the generalized flexibility matrix, a method for detecting structural damage is presented in this paper. The generalized flexibility matrix is approximately constructed by using the first frequency and the corresponding mode shape only. Then the difference of generalized flexibility curvature between undamaged and damaged state is used to detect the possible damaged elements. Finally, a numerical example concerning a simple supported beam is used to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document