Separated flow surface pressure fluctuations and pressure-velocity correlations on prolate spheroid

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 266-274
Author(s):  
Michael C. Goody ◽  
Roger L. Simpson ◽  
Christopher J. Chesnakas
AIAA Journal ◽  
10.2514/2.953 ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 266-274 ◽  
Author(s):  
Michael C. Goody ◽  
Roger L. Simpson ◽  
Christopher J. Chesnakas

1997 ◽  
Author(s):  
Michael Goody ◽  
Roger Simpson ◽  
Christopher Chesnakas ◽  
Michael Goody ◽  
Roger Simpson ◽  
...  

AIAA Journal ◽  
2010 ◽  
Vol 48 (10) ◽  
pp. 2397-2405 ◽  
Author(s):  
Gwibo Byun ◽  
Roger L. Simpson

1987 ◽  
Vol 177 ◽  
pp. 167-186 ◽  
Author(s):  
Roger L. Simpson ◽  
M. Ghodbane ◽  
B. E. Mcgrath

Measurements of surface pressure-fluctuation spectra and wave speeds are reported for a well-documented separating turbulent boundary layer. Two sensitive instrumentation microphones were used in a new technique to measure pressure fluctuations through pinhole apertures in the flow surface. Because a portion of the acoustic pressure fluctuations is the same across the nominally two-dimensional turbulent flow, it is possible to decompose the two microphone signals and obtain the turbulent flow contributions to the surface pressure spectra. In addition, data from several earlier attached-flow surface-pressure-fluctuation studies are re-examined and compared with the present measurements.The r.m.s. of the surface pressure fluctuation p′ increases monotonically through the adverse-pressure-gradient attached-flow region and the detached-flow zone. Apparently p′ is proportional to the ratio α of streamwise lengthscale to lengthscales in other directions. For non-equilibrium separating turbulent boundary layers, α is as much as 2.5, causing p′ to be higher than equilibrium layers with lower values of α.The maximum turbulent shearing stress τM appears to be the proper stress on which to scale p′; p′/τM from available data shows much less variation than when p′ is scaled on the wall shear stress. In the present measurements p′/τM increases to the detachment location and decreases downstream. This decrease is apparently due to the rapid movement of the pressure-fluctuation-producing motions away from the wall after the beginning of intermittent backflow. A correlation of the detached-flow data is given that is derived from velocity- and lengthscales of the separated flow.Spectra Φ (ω) for ωδ*/U∞ > 0.001 are presented and correlate well when normalized on the maximum shearing stress τM. At lower frequencies, for the attached flow Φ (ω) ∼ ω−0.7 while Φ(ω) ∼ (ω)−3 at higher frequencies in the strong adverse-pressuregradient region. After the beginning of intermittent backflow, Φ(ω) varies with ω at low frequencies and ω−3 at high frequencies; farther downstream the lower-frequency range varies with ω1.4.The celerity of the surface pressure fluctuations for the attached flow increases with frequency to a maximum; at higher frequencies it decreases and agrees with the semi-logarithmic overlap equation of Panton & Linebarger. After the beginning of the separation process, the wave speed decreases because of the oscillation of the instantaneous wave speed direction. The streamwise coherence decreases drastically after the beginning of flow reversal.


2021 ◽  
Vol 263 (1) ◽  
pp. 5650-5663
Author(s):  
Hasan Kamliya Jawahar ◽  
Syamir Alihan Showkat Ali ◽  
Mahdi Azarpeyvand

Experimental measurements were carried out to assess the aeroacoustic characteristics of a 30P30N high-lift device, with particular attention to slat tonal noise. Three different types of slat modifications, namely slat cove filler, serrated slat cusp, and slat finlets have been experimentally examined. The results are presented for an angle of attack of α = 18 at a free-stream velocity of U = 30 m/s, which corresponds to a chord-based Reynolds number of Re = 7 x 10. The unsteady surface pressure near the slat region and far-field noise were made simultaneously to gain a deeper understanding of the slat noise generation mechanisms. The nature of the low-frequency broadband hump and the slat tones were investigated using higher-order statistical approaches for the baseline 30P30N and modified slat configurations. Continuous wavelet transform of the unsteady surface pressure fluctuations along with secondary wavelet transform of the broadband hump and tones were carried out to analyze the intermittent events induced by the tone generating resonant mechanisms. Stochastic analysis of the wavelet coefficient modulus of the surface pressure fluctuations was also carried out to demonstrate the inherent differences of different tonal frequencies. An understanding into the nature of the noise generated from the slat will help design the new generation of quite high-lift devices.


AIAA Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Kyle P. Lynch ◽  
Elizabeth M. Jones ◽  
Allen Mathis ◽  
D. Dane Quinn ◽  
Robert J. Kuether ◽  
...  

1991 ◽  
Vol 37 (125) ◽  
pp. 89-96 ◽  
Author(s):  
Garry K. C. Clarke ◽  
Edwin D. Waddington

AbstractQuantitative understanding of the processes that couple the lower atmosphere to the upper surface of ice sheets is necessary for interpreting ice-core records. Of special interest are those processes that involve the exchange of energy or atmospheric constituents. One such process, wind pumping, entails both possibilities and provides a possible mechanism for converting atmospheric kinetic energy into a near-surface heat source within the firn layer. The essential idea is that temporal and spatial variations in surface air pressure, resulting from air motion, can diffuse into permeable firn by conventional Darcy flow. Viscous friction between moving air and the solid firn matrix leads to energy dissipation in the firn that is equivalent to a volumetric heat source.Initial theoretical work on wind pumping was aimed at explaining anomalous near-surface temperatures measured at sites on Agassiz Ice Cap, Arctic Canada. A conclusion of this preliminary work was that, under highly favourable conditions, anomalous warming of as much as 2°C was possible. Subsequent efforts to confirm wind-pumping predictions suggest that our initial estimates of the penetration depth for pressure fluctuations were optimistic. These observations point to a deficiency of the initial theoretical formulation — the surface-pressure forcing was assumed to vary temporally, but not spatially. Thus, within the firn there was only a surface-normal component of air flow. The purpose of the present contribution is to advance a three-dimensional theory of wind pumping in which air flow is driven by both spatial and temporal fluctuations in surface pressure. Conclusions of the three-dimensional analysis are that the penetration of pressure fluctuations, and hence the thickness of the zone of frictional interaction between air and permeable firn, is related to both the frequency of the pressure fluctuations and to the spatial coherence length of turbulence cells near the firn surface.


Sign in / Sign up

Export Citation Format

Share Document