Multibody system analysis based on Hamilton's weak principle

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 2382-2388
Author(s):  
D. L. Kunz

2010 ◽  
Vol 2010.5 (0) ◽  
pp. _57534-1_-_57534-9_ ◽  
Author(s):  
Hideyuki Tsukui ◽  
Nobuyuki Shimizu ◽  
Yoshiomi Hanawa


1998 ◽  
Vol 26 (2) ◽  
pp. 145-173 ◽  
Author(s):  
Radu Serban ◽  
Edward J. Haug


2006 ◽  
pp. 225-238 ◽  
Author(s):  
Willi Kortüm ◽  
Werner O. Schiehlen ◽  
Martin Arnold


2010 ◽  
Vol 2010.5 (0) ◽  
pp. _58794-1_-_58794-5_
Author(s):  
Zengming Feng ◽  
junlong Li ◽  
Yabing Cheng ◽  
Zhang Lei


2010 ◽  
Vol 24 (1) ◽  
pp. 25-41 ◽  
Author(s):  
T. Kurz ◽  
P. Eberhard ◽  
C. Henninger ◽  
W. Schiehlen


2001 ◽  
Vol 32 (10-11) ◽  
pp. 769-777 ◽  
Author(s):  
Claes Tisell ◽  
Kjell Orsborn


Author(s):  
Radu Serban ◽  
Edward J. Haug

Abstract Methods and identities for computation of kinematic and kinetic derivatives required for a broad spectrum of multibody system analyses are presented. Analyses such as implicit numerical integration of the differential–algebraic equations of multibody dynamics, dynamic sensitivity analysis, and workspace analysis are shown to require computation of three derivatives of algebraic constraint functions and first derivatives of inertia and force expressions. Computationally efficient derivative calculation methods and associated identities are presented for Cartesian generalized coordinates, with Euler parameters for orientation. Results presented enable practical and efficient computation of all derivatives required in multibody mechanical system analysis.



Sign in / Sign up

Export Citation Format

Share Document