Numerical study of natural convection from discrete heat sources in a vertical square enclosure

10.2514/3.326 ◽  
1992 ◽  
Vol 6 (1) ◽  
pp. 121-127 ◽  
Author(s):  
G. Refai Ahmed ◽  
M. M. Yovanovich
2019 ◽  
pp. 448-448
Author(s):  
Mehmet Pamuk

In this study, natural convection in a fluid-filled rectangular enclosure is analyzed using Comsol? commercial software. The fluid in which natural convection takes place is a dielectric liquid called FC-75. Attached to one of the vertical walls of the enclosure is an array of rectangular protrusions, each representing computer chips mounted on a PCB. The nominal power consumed by each chip is assumed to be 0.35W, 1.07W, 1.65W and 2.35W. This corresponds exactly to the values used in the experiments, which were performed once by the author of this study. The results of the experiment and the numerical study are shown as Nusselt numbers vs. Rayleigh numbers, both being the most important dimensionless parameters of natural convection. A comparison of the results has shown that Comsol? can achieve reliable results in similar problems, eliminating the need to build expensive experimental setups and spending time conducting experiments. The simulation results are aimed to be used in similar designs of electronic circuits in confined spaces.


1991 ◽  
Vol 113 (3) ◽  
pp. 268-274 ◽  
Author(s):  
G. Refai Ahmed ◽  
M. M. Yovanovich

A numerical study is carried out to investigate the influence of discrete heat sources on natural convection heat transfer in a square enclosure filled with air. The enclosure has two vertical boundaries of height H; one of them is cooled at Tc and the other has discrete heat sources [isoflux (q = c) or isothermal (Th = c)]. The enclosure has two horizontal adiabatic boundaries of length L. Results are reported for 0 ≤ Ra ≤ 106, Pr = 0.72, A = 1, aspect ratio ε, the relative size of the heat source to the total height, lies in the range 0.25 ≤ ε ≤ 1 and the discrete heat sources are located at the top or the bottom of the enclosure. Verification of numerical results is obtained at Ra = 0 (conduction limit) with analytical conduction solutions. In addition, a comparison with experimental and numerical data is made which also shows good agreement. The relationships between both Nu, ΔNu (change of thermal conductance) and Ra based on scale length (the size of the heat source S divided by the aspect ratio A) are also investigated here. A relationship Nu and Ra, based on scale length obtained from analytical solutions is correlated as Nu = Nu(Ra, ε). In addition, extrapolation correlations of Nu over the very high range of Rayleigh numbers (Ra ≥ 108) are developed.


Author(s):  
Ajay Vallabh ◽  
P.S. Ghoshdastidar

Abstract This paper presents a steady-state heat transfer model for the natural convection of mixed Newtonian-Non-Newtonian (Alumina-Water) and pure Non-Newtonian (Alumina-0.5 wt% Carboxymethyl Cellulose (CMC)/Water) nanofluids in a square enclosure with adiabatic horizontal walls and isothermal vertical walls, the left wall being hot and the right wall cold. In the first case the nanofluid changes its Newtonian character to Non-Newtonian past 2.78% volume fraction of the nanoparticles. In the second case the base fluid itself is Non-Newtonian and the nanofluid behaves as a pure Non-Newtonian fluid. The power-law viscosity model has been adopted for the non-Newtonian nanofluids. A finite-difference based numerical study with the Stream function-Vorticity-Temperature formulation has been carried out. The homogeneous flow model has been used for modelling the nanofluids. The present results have been extensively validated with earlier works. In Case I the results indicate that Alumina-Water nanofluid shows 4% enhancement in heat transfer at 2.78% nanoparticle concentration. Following that there is a sharp decline in heat transfer with respect to that in base fluid for nanoparticle volume fractions equal to and greater than 3%. In Case II Alumina-CMC/Water nanofluid shows 17% deterioration in heat transfer with respect to that in base fluid at 1.5% nanoparticle concentration. An enhancement in heat transfer is observed for increase in hot wall temperature at a fixed volume fraction of nanoparticles, for both types of nanofluid.


Sign in / Sign up

Export Citation Format

Share Document