Numerical Simulation of Heat Transfer in Laminar Natural Convection of Mixed Newtonian-Non-Newtonian and Pure Non-Newtonian Nanofluids in a Square Enclosure

Author(s):  
Ajay Vallabh ◽  
P.S. Ghoshdastidar

Abstract This paper presents a steady-state heat transfer model for the natural convection of mixed Newtonian-Non-Newtonian (Alumina-Water) and pure Non-Newtonian (Alumina-0.5 wt% Carboxymethyl Cellulose (CMC)/Water) nanofluids in a square enclosure with adiabatic horizontal walls and isothermal vertical walls, the left wall being hot and the right wall cold. In the first case the nanofluid changes its Newtonian character to Non-Newtonian past 2.78% volume fraction of the nanoparticles. In the second case the base fluid itself is Non-Newtonian and the nanofluid behaves as a pure Non-Newtonian fluid. The power-law viscosity model has been adopted for the non-Newtonian nanofluids. A finite-difference based numerical study with the Stream function-Vorticity-Temperature formulation has been carried out. The homogeneous flow model has been used for modelling the nanofluids. The present results have been extensively validated with earlier works. In Case I the results indicate that Alumina-Water nanofluid shows 4% enhancement in heat transfer at 2.78% nanoparticle concentration. Following that there is a sharp decline in heat transfer with respect to that in base fluid for nanoparticle volume fractions equal to and greater than 3%. In Case II Alumina-CMC/Water nanofluid shows 17% deterioration in heat transfer with respect to that in base fluid at 1.5% nanoparticle concentration. An enhancement in heat transfer is observed for increase in hot wall temperature at a fixed volume fraction of nanoparticles, for both types of nanofluid.

1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
R. Roslan ◽  
H. Saleh ◽  
I. Hashim

The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type,3≤N≤∞, the horizontal position,0.25≤X0≤0.75, the polygon size,0≤A≤π/16, the thermal conductivity ratio,0.1≤Kr≤10.0, and the Rayleigh number,103≤Ra≤106. The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate.


Author(s):  
W. Rashmi ◽  
A. F. Ismail ◽  
W. Asrar ◽  
M. Khalid ◽  
Y. Faridah

Natural convection heat transfer in nanofluids has been investigated numerically using computational fluid dynamics (CFD) approach. Analytical models that describe molecular viscosity, density, specific heat, thermal conductivity and coefficient of thermal expansion have been considered in terms of volume fraction and size of nanoparticles, size of base fluid molecule and temperature. The uniform suspensions of different concentrations of Al2O3 in base fluid (water) are considered as nanofluids. Thermal conductivity of the nanofluids has been obtained by solving the governing equations in conjunction with Kinetic model and interfacial layer model using FLUNET 6.3. Numerical simulations have been carried out in a closed pipe for L/D = 1.0. The numerical values of k have also been compared with the experimental values available in the literature. Both the models gave similar predictions with experimentally compared values of k.


Author(s):  
Mustapha Faraji ◽  
El Mehdi Berra

Abstract This paper reported the mathematical modeling and numerical simulation of natural convection flow of Cu/water nanofluid in a square enclosure using the lattice Boltzmann method (LBM). The cavity is heated from below by heat source and cooled by the top wall. The vertical walls are adiabatic. After validating the numerical code against the numerical and experimental data, simulations were performed for different Rayleigh numbers (104–0.5 × 107), nanoparticles volume fractions (0–8%), and cavity inclination angle (0 deg–90 deg). The effects of the studied parameters on the streamlines, on isotherms distributions within the enclosure, and on the local and average Nusselt numbers are investigated. It was found that heat transfer and fluid flow structure depend closely on the nanoparticle concentration. Results show differences in stream separation between a base fluid and the nanofluid. Also, adding small nanoparticles fractions, less than 6%, to the base fluid enhances the heat transfer for higher Rayleigh numbers and cavity inclination angle less than 30 deg. It is concluded that the optimal dilute suspension of copper nanoparticles can be applied as a passive way to enhance heat transfer in natural convection engineering applications.


2020 ◽  
Vol 330 ◽  
pp. 01004
Author(s):  
Abdennacer Belazizia ◽  
Smail Benissaad ◽  
Said Abboudi

Steady, laminar, natural convection flow in a square enclosure with partially active vertical wall is considered. The enclosure is filled with air and subjected to horizontal temperature gradient. Finite volume method is used to solve the dimensionless governing equations. The physical problem depends on three parameters: Rayleigh number (Ra =103-106), Prandtl number (Pr=0.71), and the aspect ratio of the enclosure (A=1). The active location takes two positions in the left wall: top (T) and middle (M). The main focus of the study is on examining the effect of Rayleigh number on fluid flow and heat transfer rate. The results including the streamlines, isotherm patterns, flow velocity and the average Nusselt number for different values of Ra. The obtained results show that the increase of Ra leads to enhance heat transfer rate. The fluid particles move with greater velocity for higher thermal Rayleigh number. Also by moving the active location from the top to the middle on the left vertical wall, convection and heat transfer rate are more important in case (M). Furthermore for high Rayleigh number (Ra=106), Convection mechanism in (T) case is principally in the top of the enclosure, whereas in the remaining case it covers the entire enclosure.


2020 ◽  
Vol 50 (4) ◽  
pp. 321-327
Author(s):  
Md Insiat Islam Rabby ◽  
Farzad Hossain ◽  
S.A.M. Shafwat Amin ◽  
Tazeen Afrin Mumu ◽  
MD Ashraf Hossain Bhuiyan ◽  
...  

A numerical study of laminar forced convection heat transfer for the fully developed region inside a circular pipe filled with Si based nanoparticle is presented for investigating the parameters of heat transfer. Four Si based nanoparticles Si, SiC, SiO2, Si3N4 with 1-5% volume fraction have been mixed with water to prepare nanofluids which is used for working fluid to flow over a circular pipe with 5mm diameter and 700mm length. Heat transfer characteristics and pumping power have been calculated at fully developed region with constant heat flux condition on pipe wall to identify the heat transfer enhancement ratio and pumping power reduction ratio among base fluid water and each nanofluids. It is worth mentioning that utilizing SiC nanoparticle shows not only the highest increment of Nusselt number and convective heat transfer coefficient but also the highest decrement of pumping power requirement and FOM in comparison to the base fluid.


2019 ◽  
Vol 30 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Abdellaziz Yahiaoui ◽  
Mahfoud Djezzar ◽  
Hassane Naji

This paper performs a numerical analysis of the natural convection within two-dimensional enclosures (square enclosure and enclosures with curved walls) full of a H2O-Cu nanofluid. While their vertical walls are isothermal with a cold temperature [Formula: see text], the horizontal top wall is adiabatic and the bottom wall is kept at a sinusoidal hot temperature. The working fluid is assumed to be Newtonian and incompressible. Three values of the Rayleigh number were considered, viz., 103, 104, 105, the Prandtl number is fixed at 6.2, and the volume fraction [Formula: see text] is taken equal to 0% (pure water), 10% and 20%. The numerical simulation is achieved using a 2D-in-house CFD code based on the governing equations formulated in bipolar coordinates and translated algebraically via the finite volume method. Numerical results are presented in terms of streamlines, isotherms and local and average Nusselt numbers. These show that the heat transfer rate increases with both the volume fraction and the Rayleigh number, and that the average number of Nusselt characterizing the heat transfer raises with the nanoparticles volume fraction.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Mohamed Sannad ◽  
Abourida Btissam ◽  
Belarche Lahoucine

This article consists of a numerical study of natural convection heat transfer in three-dimensional cavity filled with nanofluids. This configuration is heated by a partition maintained at a hot constant and uniform temperature TH. The right and left vertical walls are kept at a cold temperature TC while the rest is adiabatic. The fluid flow and heat transfer in the cavity are studied for different sets of the governing parameters, namely, the nanofluid type, the Rayleigh number Ra = 103, 104, 105, and 106, and the volume fraction Ф varying between Ф = 0 and 0.1. The obtained results show a positive effect of the volume fraction and the Rayleigh number on the heat transfer improvement. The analysis of the results related to the heat transfer shows that the copper-based nanofluid guarantees the best thermal transfer. In addition, the increase of the heating section size and Ra leads to an increased amount of heat. Similarly, increasing the volume fraction improves the intensification of the flow and increases the heat exchange.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Abdelkader Boutra ◽  
Karim Ragui ◽  
Nabila Labsi ◽  
Youb Khaled Benkahla

AbstractThis paper reports a numerical study on mixed convection within a square enclosure, filled with a mixture of water and Cu (or Ag) nanoparticles. It is assumed that the temperature difference driving the convection comes from the side moving walls, when both horizontal walls are kept insulated. In order to solve the general coupled equations, a code based on the finite volume method is used and it has been validated after comparison between the present results and those of the literature. To make clear the effect of the main parameters on fluid flow and heat transfer inside the enclosure, a wide range of the Richardson number, taken from 0.01 to 100, the nanoparticles volume fraction (0% to 10%), and the cavity inclination angle (0º to 180º) are investigated. The phenomenon is analyzed through streamlines and isotherm plots, with special attention to the Nusselt number.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
R. K. Nayak ◽  
S. Bhattacharyya ◽  
I. Pop

A numerical investigation of mixed convection due to a copper–water nanofluid in an enclosure is presented. The mixed convection is governed by moving the upper lid of the enclosure and imposing a vertical temperature gradient. The transport equations for fluid and heat are modeled by using the Boussinesq approximation. A modified form of the control volume based SIMPLET algorithm is used for the solution of the transport equations. The fluid flow and heat transfer characteristics are studied for a wide range of Reynolds number and Grashof number so as to have the Richardson number greater or less than 1. The nanoparticle volume fraction is considered up to 20%. Heat flow patterns are analyzed through the energy flux vector. The rate of enhancement in heat transfer due to the addition of nanoparticles is analyzed. The entropy generation and Bejan number are evaluated to demonstrate the thermodynamic optimization of the mixed convection. We have obtained the enhancement rate in heat transfer and entropy generation in nanofluid for a wide range of parameter values.


Sign in / Sign up

Export Citation Format

Share Document